Simulation chain and signal classification for acoustic neutrino detection in sea water

Dominik Kießling ARENA 2014 Annapolis, 09.-12. June 2014

Overview

- aim: compare sensitivities of different detector configurations
- use Mediterranean Sea as an example (based on measurements from/around AMADEUS)
- adaptable software approach (modular SeaTray software, based on IceTray)

Content:

- Effects of refraction on the simulation
- Simulation using parameterizations
- Full simulation chain
- Signal classification

Influence of curved sound paths on simulations

- Sound path is bent towards lower speed (upwards for the deep sea)
- Path r determined by:

$$\frac{\partial^2 r}{\partial x^2} = -\left(1 + \left(\frac{\partial r}{\partial x}\right)^2\right) \cdot \frac{\partial c}{c \cdot \partial z}$$

- Requires ray tracing: 100.000 times slower than with straight paths
- Refraction leads to a blind space for hydrophones

Loss of effective volume

Hydrophone mounted > 100 m above seafloor

No significant impact on the effective volume derived from simulations Use straight propagation to save time

Approaches towards simulation

Simulation consists of several modules in a framework (SeaTray) Modules are easy to replace/reuse

Full simulation:

- Generate waveform & noise sample
- Full DAQ/Trigger simulation
- Deriving flux limits, developing analysis methods etc.
- Requires a lot of CPU time (> 10s/event)

Using parameterizations:

 Very fast (1 ms/event), providing an estimate of the detector performance

Simulation with parameterizations

Comparing different detector setups

AMADEUS

- 2 lines, 230m apart
- 3 floors/line, 14.5 100m
 - 6 hydrophones/floor

Comparing apples and oranges:

- 2D setup vs. 3D setup
- Different number of sensors per cluster

KM3NeT Phase 1

- 24 lines, 100m apart
- 18 optical modules/line, 36m
 - 1 acoustic sensor/module

Effective volume for acoustic detection

Simulation chain modules

ARENA 2014 - 09.-12. June - Dominik Kießling

Ambient noise

- Ambient noise from 5 years of AMADEUS data
- Determines energy threshold

DAQ & Sensor simulation

Directional system response of the sensors & Inherent noise of the sensors

System response of the ADC board & Inherent noise of the ADC board

Filter simulation

According to online filter used in AMADEUS Matched filter + coincidence test

Has to be adapted for different setups

Signal classification needed

- High rate of transient background with bipolar pulses, from e.g. whales and dolphins
- Additional background suppression is necessary

- Acoustic signal from neutrinos is emitted in a O(20 m) thick plane
- Most background is emitted as spherical waves
- Use the sound propagation geometry as classification for the signals in a large volume acoustic detector

0

Simulated events

- Neutrinos (Energy $10^{19} 10^{21} \text{ eV}$)
- Signals from the positioning system
- Spherical sources
- Random coincidences

Distinctive features of signals

- Generate characteristic features from the signature for classification
- Features should be independent of the detector geometry
- Good candidates are:
 - Number of hits
 - Center of gravity of the event
 - Principal components
 - PCA also yields a pancake-reconstruction:
 - RMS of the distance from the triggered hydrophones to the plane
 - Agreement of the reconstructed vertex with the pancake plane

• ...

Classification with boosted trees

- Use these features for a multivariate analysis
- Boosted Trees show the best performance: Recognition rate of 99%
- Tested with different detector geometries:
 - 8 lines, 14 floors
 - 24 lines, 18 floors (KM3NeT Ph1)
- Classification works with the same features and learned models for similar setups!
- Outlook: Checking the stability of the classification with reduced signal quality

Summary and Outlook

- Fully operational simulation chain available
- Refraction of sound paths has negligible effect on sensitivity in simulations
- DAQ Simulation will be adapted to KM3NeT
- Signal classification is working, but has to be tested with overlapping events

Bundesministerium für Bildung und Forschung

Thank you for your attention!

Bundesministerium für Bildung und Forschung

Backup

Signature of particle showers in an acoustic array

- Acoustic signal is basically emitted in a O(20 m) thick plane
 - Curved like a normal acoustic signal: ~10 m deflection after 1 km
- Typical detector setup:
 - ~100 m between lines
 - ~20 m between floors
- Signature of events is not affected by the curvature

Simulations can be done with straight propagation, but position reconstruction should include these effects for long distances

Sound speed profile

- Sound speed profile is nearly linear below 200 m
- Sound path mainly determined by:

Sound path (short distance)

Sound path (long distance) **Sound Path** Depth [m] 0 -1000 -2000 40000 10000 20000 30000 0 Distance [m]

