A parameterization of the radio signal as measured on the ground

CORSIKA + CoREAS simulation of air shower

zenith angle: 45 degrees, azimuth angle: 13 degrees energy: $2x10^{18}$ eV

Idea: Model the "bean shape"

2 Anna Nelles, ARENA 2014, Annapolis

See also: A. Nelles et al., Astropart. Phys., in press

Simulation Set-up

Fitting the model

4 Anna Nelles, ARENA 2014, Annapolis

Fitting the model

Anna Nelles, ARENA 2014, Annapolis

5

- Scaling parameter A₊ is a function of the energy
- Slope in log-log depiction ~ 2.0, i.e. power depends quadratic on energy
- Remaining scatter is a function of angle with magnetic field, sin(alpha) and distance to the shower maximum

7

- Scaling parameter A₊ is a function of the energy
- Slope in log-log depiction \sim 2.0, i.e. power depends quadratic on energy
- Remaining scatter is a function of angle with magnetic field, sin(alpha) and distance to the shower maximum

1400

- Shift parameter X₊ is a function of the azimuth angle of the shower
- Shift represents interplay between emission mechanisms
- Largest shift for azimuth parallel to magnetic field
- Small but not measurable shift in Y₊ direction

-10

-20

-30

-40

-50

200

400

600

800

1000

1200

Distance to X_{max} [g/cm²]

1400

- Offset of small Gaussian to shower core (X₋) is function of distance to the shower maximum
- Behavior changes direction and medium distances
- Shift needed for Cherenkov and charge excess, dominance of contribution

Using function as prediction

$$P(x',y') = f_1(E) \cdot \exp\left(\frac{-f_2(\phi, X, Y, x', y')}{f_3(\theta, X_{\max})}\right)$$
$$-C_0 \cdot f_1(E) \cdot \exp\left(\frac{-f_4(\theta, X_{\max}, X, Y, x', y')}{f_5(\theta, X_{\max})}\right)$$

- Use functions of physical air shower parameters instead of fit parameters
- Very fast and simple prediction for studies of efficiencies, detection thresholds etc.

Reduction of parametrization

$$P(x',y') = A_{+} \cdot \exp\left(\frac{-[(x'-X_{c})^{2}+(y'-Y_{c})^{2}]}{\sigma_{+}^{2}}\right)$$
$$-C_{0} \cdot A_{+} \cdot \exp\left(\frac{-[(x'-(X_{c}-C_{3}))^{2}+(y'-Y_{c})^{2}]}{(e^{C_{1}+C_{2}\cdot\sigma_{+}})^{2}}\right)$$

- Reduction in several ways possible, exploiting correlations between parameters
- Maximum reduction: 4 free parameters A+, Sigma+, X_c and Y_c
 - C₀, C₁ and C₂ constant
 - C₃ binned for zenith angle
- At LOFAR:
 - C₃ free parameter as sufficient number of antennas
 - C₀ can vary in restricted range

Test on Data

12 Anna Nelles, ARENA 2014, Annapolis

Azimuthal asymmetry in data

Test on Data

Reconstruction of shower parameters

Testing the predictions of the simulations:

- Independent measurement from particle detectors LORA:
- instrumented area smaller than LOFAR area
- strong cuts on reconstruction limits sample (cuts on NKG parameters and distance of core position)
- test against full sample contains mis-reconstructions

- (Partly)-Independent reconstruction from Full Monte Carlo method (see Talk Stijn Buitink)
- Both methods based on CoREAS
- Both methods use radio only
- Only 50 air showers

Conclusions

- We presented a "Double Gaussian" function with minimal 4 free parameters
- Scaling parameter directly sensitive to energy of air shower
- Width parameter directly sensitive to distance to the shower maximum
- All LOFAR data can be fitted with suggested function
- Correlations of parameters experimentally confirmed
- Next up: cross-check with experiment that has different way of measuring X_{max} as for example AERA at Pierre Auger Observatory

