First data analysis steps for the Askaryan Radio Array stations

Thomas Meures for the ARA-collaboration

Outline

1. Reminder: The ARA-detector:

- Method
- Setup
- Data acquisition
- 2. Data analysis:
 - Low level data filters
 - Reconstruction
 - CW treatment
- 3. Example cuts and sensitivity

The ARA-detection method

Detection via the Askaryan effect:

- Neutrinos produce particle cascades in the ice
- If the energy is high enough, a significant negative charge excess (~20%) is built up through:

The ARA-detector

Each station:

- Measurement system:
 - 4 holes, 20 m spacing
 - 16 antennas, 150 MHz 800 MHz
 (8 horizontally polarized., 8 vertically pol.)
- Calibration system:
 - 2 holes, ~40 m distant
 - 4 pulsing antennas (2 h-pol., 2 v-pol.)

Each station is an autonomous detector!

- 37 antenna stations planned
- 3 stations deployed at the current date (two currently operating)

- → Maximizing effective volume by avoiding overlap
- Antennas deployed in a depth of 200 m
 → Minimizing the effect of "ray curvature"
 due to the changing index of refraction in the ice

The ARA data acquisition

Low level filters

Low level data filters

Purpose: Filter data to be transferred north via satellite during the year, reduce thermal noise triggers to ~1%

1. N-channel filter:

Sets threshold to recorded waveforms, count channels with voltage above threshold during event

Passes about 83% simulated E^-2 neutrinos, while only 0.6% simulated thermal noise

Low level data filters

2. Time-sequence algorithm:

- Record voltage above set threshold as antenna hit
- Calculate measure for the recorded hit pattern to be produced by plane wave-front
- Histogram time differences for all appearing antenna hitpairs.

Expectation:

- Antenna pairs with same space relation show same time difference
- → Accumulation at certain time difference for a signal event
- ightarrow Sum maximal hit counts

Low level data filters

ARA analysis approaches

We need to distinguish neutrinos from:

- Thermal noise
- Continuous wave sources (mostly radio communications)
- Man made impulsive events

Analysis 1

ARAENA20

Event reconstruction through interferometric Maps (Eugene Hong, Carl Pfendner, OSU):

- Shift waveforms between antenna pairs according to expectations of a vertex position on the sky (distance is fixed).
- Calculate the sum of correlation for such a set of shifts
- Accounts for changing index of refraction through ray-tracing

Analysis 1 Data cuts

A currently investigated approach:

Extend TestBed analysis to ARA-stations (use main cut):

- Check for 2nd highest peak in all waveforms
- Plot this versus the maximum in interferometric map

CW: Need to identify, need to check influence

Currently investigated method from LOFAR: Check for phase variance between antennas in consecutive events:

- CW: phase expected to be constant
- Noise, Single events: random variance of phase

By E. Hong, C. Pfendner

Analysis 2

napol

Matrix Based event reconstruction (After Bancroft's method):

- Use arrival time differences from correlation (precision ~100 ps)
- Set up system of equations, linear for the vertex coordinates:

$$2x_{i,j}x_{\nu} + 2y_{i,j}y_{\nu} + 2z_{i,j}z_{\nu} \\ = r_i^2 - r_j^2 - c^2(t_i^2 - t_j^2) + 2c^2t_{i,j}t_{\nu}$$

- Solve linear system of equations: a * v = b
- Scan t_v to find minimal residual:

$$\operatorname{res} = \left\| \frac{\boldsymbol{b}}{|\boldsymbol{b}|} - \frac{\boldsymbol{a} \ast \boldsymbol{v}}{|\boldsymbol{a} \ast \boldsymbol{v}|} \right\|^2$$

 Some advantages: Fast algorithm, not seed dependent

Simulated E²-2 neutrinos (res<0.01):

Analysis 2 Data cuts

looking at the real data

Signal – Noise separation:

- Event from above are not reconstructed downwards
- Good separation possibility through residual

Time sequence parameter: ARA03

Test simple cut combination on available data subset:

• Data sample: 0.5% of all recorded data

Require:

- Residual < 0.01
- Time sequence parameter > 0.6

Result ARA03 - "skymap"

looking at the real data

Туре	Total	Surviving cuts	Percentage
RF triggers	767354	6	8E-4 %
Calibration	122417	121416	99 %

AKAENA2014 Annapolis

Simulation results

- The presented 2 cuts need:
 - more detailed treatment,
 - more intelligent combination,
 - More data to test on (only 0.5% so far)
- Assume same cuts and same results for 2 stations full data

...to get an idea of a possible neutrino sensitivity at analysis level

Using Ahlers2010 → Number of neutrinos:

ARA2(10month) analysis projection: ~0.4 Scale this to ARA37(3years): ~27 This is all very preliminary!

Summary

- Low level filters work well to reduce thermal noise to <0.5% while keeping more than 80 % of the signal
- Reconstructions are under way to be used as signal to noise discrimination and for determination of the incoming angle. More reconstructions are available and tested!
- A simple 2 cut combination could be sufficient for background rejection (CW influence still needs to be investigated)
- Stay tuned for the full ARA2 data analysis coming up soon

BACKUP

Event reconstruction

Currently tested on the ARA stations:

- TMinuit reconstruction
- Coherently summed wave maximization
- Interferometric maps
- Matrix based linear reconstruction
- Analytic Sphere Method

Event reconstruction

Currently tested on the ARA stations:

- TMinuit reconstruction
- Coherently summed wave maximization
- Interferometric maps
- Matrix based linear reconstruction
- Analytic Sphere Method

Uses threshold based hit-finder in the time domain waveforms

Use cross-correlation antenna pairs

- Arrival times are determined by searching for the maximum correlation of two waveforms:
- Correlation: $\frac{\sum [V_{1,i} * V_{2,i}]}{\sqrt{\sum V_{1,i}^2 * \sum V_{2,i}^2}}$

Event Reconstruction

TMinuit reconstruction (Dave Besson, KU):

- Set of time differences through maximum correlation
- Compares expected time for a vertex to measured times
- Uses Tminuit to find minimal Chi2
- Accounts for changing index of refraction

Analytic Sphere Method: (A. Schultz, I. Kravchenko, C. Bora, S. Avdeev, Univ. Nebraska)

- Determines timing through hit-finder in time domain
- Calculate analytic vertex position with all combinations of four antennas
- Remove outliers and calculate the average result
- Uses straight line approximation to account for changing index of refraction

Precision to be determined

Event reconstruction

Coherently summed wave method (by Jonathan Davies, UCL, GB):

- Find timing set with best correlation
- Search the sky for a vertex position that gives • a minimal chi2, when comparing measured timing to estimated timing

Events

of

Number 104

10⁵

10³

10²

10

Event reconstruction

Matrix based reconstruction: Precision:

Digitizer calibration

Signal Input

Timing Strobe

Vadi

Sampling through 2 **S**witched **C**apacitor **A**rrays:

Delay times are set via V_{adi}

ARA uses the IRS2 ASIC, designed in Hawaii for DAQ

Special features of this digitizer:

- High sampling speed up to 4 GHz
- Extra deep storage: 32k samples/channel = 10μs
- Designed for low power consumption (using CMOS technology, low speed elements)

Digitizer calibration

Digitizer calibration

Voltage calibration: Need to calibrate: 32 768 storage elements 64 sampling capacitors 64 Wilkinson channels Voltage transfer processes

As opposed to timing calibration: Use high amplitude samples from input waveforms and compare to fit for voltage calibration

Non-linearities found in the ADC to voltage conversion

Fit ADC to voltage relation for each storage element:

ARA calibration

Also investigated:

Inter channel crosstalk, sample memory effects, temperature dependence

ightarrow can be excluded as significant effects

ARA calibration

We need calibration for neutrino reconstruction:

- Calibrated 128 timing elements per chip
- 32 678 storage cells per chip

Station Controller

→ Test stability of timing between calibration signals through cross-correlation

