The effects of surface roughness on lunar Askaryan pulses

Clancy W. James, ECAP University of Erlangen-Nuremberg ARENA 2014, Annapolis, Maryland

Motivation

- Lunar surface roughness
 - The Moon is not smooth. How to model this?
 - Current treatment: ignores small-scale roughness. Let's do this properly!
- History of the work:
 - Work initially presented in Nantes (ARENA 2010), over 3 slides
 - Poster at ICRC 2013 (one nice person even asked me about it!)
- Renewed ('newed'?) interest:
 - ANITA roughness
 - Observing with the SKA

Current treatment in simulations*

Surface roughness: use radar backscatter

$$\tan S_{\rm rms} = 0.29 \left(\frac{\lambda}{1 \text{ cm}}\right)^{-0.22}$$

- 7.8 degrees at 1 GHz
- 4.7 degrees at 100 MHz
- Deviate local surface and apply ray tracing:

$$t_{\perp} = \frac{2n_t \cos \theta_t}{n_t \cos \theta_i + n_i \cos \theta_t}$$
$$t_{\parallel} = \frac{2n_t \cos \theta_t}{n_t \cos \theta_t + n_i \cos \theta_i}$$

1

Fresnel with 'solidangle stretching'

*Sims for Goldstone, Kalyazin, & LUNASKA (similar for ANITA)

- Scattering increases effective area
- Let's do this properly!

Making a surface

Credit: NASA/LRO/LOLA (2010) http://lunar.gsfc.nasa.gov/

What we know of the lunar surface

- Largest scales: satellite laser altimiters
 - Lunar Reconnaissance Orbiter (LRO) global maps to 500m
 - LRO North/South pole maps (to 5m)
- Intermediate scale: radar reflections
 - Arecibo backscatter (statistical data) from 1cm to 6m
 - Radio polarisation at lunar limb
- Smallest scales: stereo photography
 - Apollo missions: 1mm to 10 cm

Helfenstein & Shepard, Icarus 141, 107 (1999)

LUNAR RADAR DATA 0.25 - 0.29 λ^{-0.22} SLOPE (1/VC) D = 2.220.20 0.15 0.10 0.05 700 100 200 300 400 500 600 WAVELENGTH (cm)

0.30

Shepard et al, J. Geo.Res. 100 E6 11709 (1995)

P.H.Moffat, MNRAS 160, 139 (1972)

What we know of the lunar surface

• Lunar surface data: power spectrum over the entire Moon

Combining LRO SP data and random roughness?

- Strange upturn in LRO polar spectrum
 - Instrumental errors: add artificial power?
 - DFT properties FFT over finite length
 - Data processing (usually would cause smoothing...)
- Future work:
 - Use exact lunar maps to 5m
 - Add random component at smaller scales
 - Not yet complete
- Here: use only random rough surface

Example: random rough surface

- Generate random surface using power-spectrum method
 - Create Fourier Transform of the surface
 - FFT to spatial domain
 - Cut away edges

Radio transmission through a rough surface

• Field in region 2: (Stratton & Chu. 1939, Eq. 24):

$$4\pi E(x, y, z) = -\frac{1}{i\omega\epsilon} \oint_C \nabla \psi \mathbf{H}_1 \cdot d\mathbf{s} - \iint_{S_1} [i\omega\mu(\mathbf{n} \times \mathbf{H}_1)\psi + (\mathbf{n} \times \mathbf{E}_1) \times \nabla \psi + (\mathbf{n} \cdot \mathbf{E}_1) \nabla \psi] da$$

Plane wave solutions on rectangular screen

• Assume:

- E1, H1 are incident plane waves (far-field Askaryan radiation)
- E2, H2 are outgoing plane waves (at Earth or lunar satellite)
- S is a rectangular surface (a facet!)
- Solutions: 4 coefficients between incoming and outgoing parallel and perpendicular polarisations. $E_{\theta}(\theta, \phi, v) > E_{\theta}(\theta, \phi, v)$

$$\begin{aligned} \mathbf{E}_{\hat{\theta}\perp} &= \frac{ikA}{4\pi} \left(1 + \cos\theta\cos\alpha\right) \left(\sin\phi\cos\beta - \cos\phi\sin\beta\right) E_{\perp} \\ \mathbf{E}_{\hat{\phi}\perp} &= \frac{ikA}{4\pi} \left(\cos\alpha + \cos\theta\right) \left(\sin\phi\sin\beta + \cos\phi\cos\beta\right) E_{\perp} \\ \mathbf{E}_{\hat{\theta}\parallel} &= \frac{ikA}{4\pi} \left(\cos\alpha + \cos\theta\right) \left(\sin\phi\sin\beta + \cos\phi\cos\beta\right) E_{\parallel} \\ \mathbf{E}_{\hat{\phi}\parallel} &= \frac{ikA}{4\pi} \left(1 + \cos\theta\cos\alpha\right) \left(\sin\beta\cos\phi - \sin\phi\cos\beta\right) E_{\parallel} \\ \mathbf{A} &= 4\frac{e^{ikR}}{R} \frac{\sin\left(\frac{a}{2}(\mathbf{k}_{t} - \mathbf{k}_{i})_{x}\right)}{(\mathbf{k}_{t} - \mathbf{k}_{i})_{x}} \frac{\sin\left(\frac{b}{2}(\mathbf{k}_{t} - \mathbf{k}_{i})_{y}\right)}{(\mathbf{k}_{t} - \mathbf{k}_{i})_{y}} \end{aligned}$$

Full diffractive solution – each facet radiates in all directions

C.W. James, ARENA, 9th-12th June, 2014

Modelling a hadronic cascade

Hadronic cascade profiles in the Moon

Fit cascade shape using total charge from simulations in ice:

Emission from particle cascades

• Emission from entire cascade:

$$R E(f, E_{s}) = 8.45 \times 10^{-8} \frac{E_{s}}{1 \text{ TeV}} \frac{f}{1 \text{ GHz}} \varepsilon(E_{s}) \exp\left(-\left(\frac{\theta - \theta_{c}}{\Delta \theta}\right)^{2}\right) \left(\frac{1}{1 + \left(\frac{f}{f_{0}}\right)^{1.23}}\right)^{-1} \text{ (V/MHz)}$$

$$f_{0} = 2.32 \text{ GHz} \qquad \text{(lateral decoherence)}$$

$$\Delta \theta_{0} \approx 2.4^{\circ} - 0.18^{\circ} \log(E_{s}/10 \text{ EeV}) \qquad \text{(longitudinal decoherence)}$$

$$\varepsilon(E_{s}) \approx 90\% \qquad \text{(electromagnetic fraction)}$$

- Model longitudinal profile only, assume lateral decoherence ~ independent of surface roughness
- Emission from small piece of longitudinal profile: ZHS formula

$$\left|\vec{E}(\theta,R,\nu)\right| = \frac{q}{c} \frac{e^{i(kR)}}{R(t)} e^{2\pi i \nu t_1} \left(\frac{1 - e^{2\pi i \nu (1 - n\beta\cos\theta)(t_2 - t_1)}}{1 - n\beta\cos\theta}\right) \beta\sin\theta$$

Angular spectrum of emission in the Moon

• 3m boxcar vs 43-track spectrum vs analytic parameterisation

• Here: results for both a 3m boxcar and a 43-piece model

Scaling: Alvarez-Muniz, Marques, Vazquez, Zas, Phys Rev D 74, 023007 (2006)

Putting it all together

Diagram of methods $E_{\theta}(\theta,\phi,\nu)$ $E_{\phi}(\theta,\phi,\nu)$ $\mathbf{E}_{\hat{\theta}\perp} = \frac{ikA}{4\pi} \left(1 + \cos\theta\cos\alpha\right) \left(\sin\phi\cos\beta - \cos\phi\sin\beta\right) E_{\perp}$ $\left| \mathbf{E}_{\hat{\phi}\perp} \right| = \frac{ikA}{4\pi} \left(\cos \alpha + \cos \theta \right) \left(\sin \phi \sin \beta + \cos \phi \cos \beta \right) E_{\perp}$ $\mathbf{E}_{\hat{ heta}\parallel} \;\;=\;\; rac{ikA}{4\pi} \left(\coslpha + \cos heta ight) \left(\sin\phi\sineta+\cos\phi\coseta ight) E_{\parallel}$ Is facet visible? $\mathbf{E}_{\hat{\phi}\parallel} = \frac{ikA}{4\pi} \left(1 + \cos\theta\cos\alpha\right) \left(\sin\beta\cos\phi - \sin\phi\cos\beta\right) E_{\parallel}$ \vec{E}_2 fresnel local boundary solution \vec{E}_1 absorption Is facet visible? $\left|\left|\vec{E}\left(\theta,R,\nu\right)\right| = \frac{q}{c} \frac{e^{i(kR)}}{R(t)} e^{2\pi i \nu t_1} \left(\frac{1 - e^{2\pi i \nu (1 - n\beta\cos\theta)(t_2 - t_1)}}{1 - n\beta\cos\theta}\right)$ $\beta \sin \theta$ 18 C.W. James, ARENA, 9th-12th June, 2014

Description of the problem

- Today, only $\phi = 0$, one rough surface/cascade
- Look at θ, v dependence for select geometries

Numerical dials

- Length scales: tune using numerical convergence
 - Surface size: how large a surface do we need to describe?
 - Track division: how short do we need the tracks?
 - Facet division: how small do we need the facets?
- Self shadowing
 - Roughness increases at small length scales
 - Effects of self-shadowing become more important
 - Treatment becomes less valid

• Current treatment: describe roughness to ~1cm, track fraction of selfshadowed facets, make sure it's not 'too high' (whatever that is).

VS

Testing against analytic formula: flat surfaces

3m boxcar: simulation vs theory

- Lines: 5 lines gnuplot code
- Points: each a sum of ~8x10⁸ track/facet pieces

- Analytic model does not include diffraction!
- When estimates differ, the numerical model is (probably) correct

PRELIMINARY **Testing for near-surface showers (CR)** (numerical dials still need turning) 10^{-5} analytic strength (V/Hz) 1m depth 1 GHz 40m depth $n_2=1.0$ flat 10^{-6} n₁=1.8 100 MHz 1m/40m 10^{-7} 43-piece Field shower 10⁻⁸ × Ъ 10^{-9} 10 20 30 40 50 60 70 80 90 0 θ (deg)

- ZHS @ 1m: OK when transmitting to infinity?
- Caution: analytic results ignore diffraction

Preliminary results: ~neutrinos

Typical neutrino geometries

• Neutrinos: detect 'skimming' events (parallel to the surface)

- Simulations for shower profile not yet finished...
- What are the effects of surface roughness at high and low frequencies?
 - Angular distribution
 - Pulse coherence

rough

3m box

10m

Results with simple 3m, 1 e⁻ track model

• '3m track' model, 10m depth, parallel to surface

Roughness has similar effects at both freqs!

100 MHz at 100m vs 1 GHz at 10m

Time-domain pulses with 3m boxcar at 10m depth

• 1.0-2.0 GHz bandwidth: time-domain pulses 'mostly coherent'

Horizontal polarisation: analytic model predicts none

Preliminary results: ~cosmic rays

Cosmic rays with the SKA

- Pierre Auger runs out of statistics
- SKA might detect ~10x Auger cosmic rays above 5x10¹⁹ eV
- Most promising frequency range: 100-350 MHz (SKA LOW band)

• Key questions: does the signal maintain coherence?

Tentative results: cosmic rays

PRELIMINARY (numerical dials still need turning)

 10²⁰ eV hadronic cascade, 10^o angle of incidence, shower max 4.6m after initial point

Conclusion

- First calculation of the effects of small-scale roughness on coherent pulses – it works!
 - Outputs: spectrum, angular distribution, and time-domain pulses
- Simulations slow; numeric tuning an art. Comprehensive study still needs to be done.
- First results: roughness ~equally important over all frequencies for neutrinos. May be positive for high-freq CR detection?
- Next steps:
 - Automate numerical tuning
 - Characterise/quantify effects
 - Adapt to Antarctic surfaces?

- Add lateral spread
- Use in sensitivity calculations

Backup

Germany announces intent to leave SKA

• "On Thursday 5th of June, 2014, in an official letter signed by Dr. Georg Schütte, the State Secretary of BMBF, the German federal science ministry, Germany officially informed the SKA Director-General of its intent to leave the SKA Organisation."

Federal Ministry of Education and Research

VS

- Priorities: E-ELT, CTA
- SKA data access policy: no SKA data for Germany
- SKA grant applications: no chance for BMBF funding

Track/facet division

- Determine errors in plane wave assumption: $\Delta \phi_i = |\phi_i - \phi_0|$
 - Calculate phase errors from track length
 - If $\Delta \phi > [error_margin]$, divide track in two
 - Calculate phase errors from facet size
 - If $\Delta \phi > [error_margin]$, divide facet in four (2x2)
- The current checks on numerical accuracy are far from optimal (e.g. no check in 1/R)
 φ₁
- Results presented here required optimisation by hand

Frequency-dependence of roughness effects?

- Characteristic surface length seen by emission: $L_s \sim d\Delta\theta \sim v^{-2}$
- Surface roughness: power-law scaling
- Effect on the signal:

$$\Delta z / \lambda \sim v \Delta z \sim v^{-0.56}$$

 $S_{rms}\left(\frac{\Delta z}{\Delta I}\right) \sim L^{-0.22}, \ \Delta z \sim L^{0.78}$

Putting it all together

- Ingredients:
 - Longitudinal cascade profile (10²⁰ eV hadronic cascade)
 - Random rough surface
- For each facet x track x frequency:
 - Subdivide facet and track to meet far-field requirements
 - Calculate sub-track radiation on sub-facet using ZHS formula
 - Apply standard Fresnel transmission to get E1
 - Calculate outgoing radiation for each outgoing direction
 - Sum fields coherently, retaining full polarisation/phase information
- Numerous numerical dials to turn:
 - When to subdivide tracks/surfaces
 - How to subdivide surfaces $(z(x_{1,2}, y_{1,2})$ is not rectangular...)
 - Intrinsic roughness of surface