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Motivation 

●  Lunar surface roughness 
●  The Moon is not smooth. How to model this? 
●  Current treatment: ignores small-scale roughness. Let’s do this properly! 

●  History of the work: 
●  Work initially presented in Nantes (ARENA 2010), over 3 slides 
●  Poster at ICRC 2013 (one nice person even asked me about it!) 

●  Renewed (‘newed’?) interest: 
●  ANITA roughness 
●  Observing with the SKA 

2C.W. James, ARENA, 9th-12th June, 2014
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Current treatment in simulations* 

●  Surface roughness: use radar backscatter 

●  7.8 degrees at 1 GHz 
●  4.7 degrees at 100 MHz 

●  Deviate local surface and apply ray tracing: 

3C.W. James, ARENA, 9th-12th June, 2014 *Sims for Goldstone, Kalyazin, & LUNASKA (similar for ANITA) 
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P.W. Gorham et al., RADHEP, 2001 
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✗ 
Lunar surface effects 

●  B: Treated in simulations 
●  D: D.N.E. 

●  C: ~treated statistically 
●  A: ??? Let’s do this! 

●  Effects of small-scale roughness: 
●  Decoherence – increases detection threshold 
●  Scattering – increases effective area 

●  Let’s do this properly! 

4C.W. James, ARENA, 9th-12th June, 2014



Making a surface 
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What we know of the lunar surface 

●  Largest scales: satellite laser altimiters 
●  Lunar Reconnaissance Orbiter (LRO) global maps to 500m 

●  LRO North/South pole maps (to 5m) 

●  Intermediate scale: radar reflections 

●  Arecibo backscatter (statistical data) from 1cm to 6m 

●  Radio polarisation at lunar limb 

●  Smallest scales: stereo photography 

●  Apollo missions: 1mm to 10 cm 

C.W. James, ARENA, 9th-12th June, 2014

Credit: NASA/LRO/LOLA (2010) 
http://lunar.gsfc.nasa.gov/ 

Shepard et al, J. Geo.Res. 
100 E6  11709 (1995)  

Helfenstein & Shepard, Icarus 141, 107 (1999)  

P.H.Moffat, MNRAS 160, 139 (1972) 
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What we know of the lunar surface 

●  Lunar surface data: power spectrum over the entire Moon 

7C.W. James, ARENA, 9th-12th June, 2014
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Combining LRO SP data and random roughness? 

●  Strange upturn in LRO polar spectrum 
●  Instrumental errors: add artificial power? 
●  DFT properties – FFT over finite length 
●  Data processing (usually would cause smoothing…) 

●  Future work: 
●  Use exact lunar maps to 5m 

●  Add random component at smaller scales 
●  Not yet complete 

●  Here: use only random rough surface 

8C.W. James, ARENA, 9th-12th June, 2014
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Example: random rough surface 

●  Generate random surface using power-spectrum method 
●  Create Fourier Transform of the surface 
●  FFT to spatial domain 
●  Cut away edges 

9C.W. James, ARENA, 9th-12th June, 2014

LRO data: (1024*5m)2 Random surface: (220x10cm)2 



Radio transmission through a rough surface 
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Transmission of fields through an interface 

●  Field in region 2: (Stratton & Chu. 1939, Eq. 24): 
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Plane wave solutions on rectangular screen 

●  Assume: 
●  E1, H1 are incident plane waves (far-field Askaryan radiation) 
●  E2, H2 are outgoing plane waves (at Earth or lunar satellite) 
●  S is a rectangular surface (a facet!) 

●  Solutions: 4 coefficients between incoming and outgoing parallel and 
perpendicular polarisations. 

●  Full diffractive solution – each facet radiates in all directions 
12C.W. James, ARENA, 9th-12th June, 2014
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Modelling a hadronic cascade 
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Hadronic cascade profiles in the Moon 

●  Fit cascade shape using total charge from simulations in ice: 

 

14C.W. James, ARENA, 9th-12th June, 2014

Alvarez-Muniz, Zas, 
Phys.Lett. B 434 (1998) 396  
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Emission from particle cascades 

●  Emission from entire cascade: 

●  Model longitudinal profile only, assume lateral decoherence ~ 
independent of surface roughness 

●  Emission from small piece of longitudinal profile: ZHS formula 
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Angular spectrum of emission in the Moon 

●  3m boxcar vs 43-track spectrum vs analytic parameterisation 

●  Here: results for both a 3m boxcar and a 43-piece model 

 

16C.W. James, ARENA, 9th-12th June, 2014
Scaling: Alvarez-Muniz, Marques, Vazquez, Zas, 
Phys Rev D 74, 023007 (2006) 

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0  10  20  30  40  50  60  70  80  90

R
 
x
 
F
i
e
l
d
 
s
t
r
e
n
g
t
h
 
(
V
/
H
z
)

e (deg)

3m ’boxcar’ track
new shower

Scaled USdC param



Putting it all together 
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Diagram of methods 

18C.W. James, ARENA, 9th-12th June, 2014
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Description of the problem 

●  Full calculation: 
●  5 dimensions of inputs  
●  3 dimensions of outputs 
●  3 dimensions of calculation 

●  Today, only          ,  one rough surface/cascade  
●  Look at          dependence for select geometries  

19

d n1=1.73 

n2=1.0 
θ 

α 

ϕ 

Mean lunar surface 

Surface facets s analytic ray path 

θ,φ,ν
α,d, s2,c

s2,c

φ = 0
θ,ν

C.W. James, ARENA, 9th-12th June, 2014

Eθ θ,φ,ν( )

Eφ θ,φ,ν( )



20

Numerical dials 

●  Length scales: tune using numerical convergence 
●  Surface size: how large a surface do we need to describe? 
●  Track division: how short do we need the tracks? 
●  Facet division: how small do we need the facets? 

●  Self shadowing 
●  Roughness increases at small length scales 
●  Effects of self-shadowing become more important 
●  Treatment becomes less valid 

●  Current treatment: describe roughness to ~1cm, track fraction of self-
shadowed facets, make sure it’s not ‘too high’ (whatever that is). 

20

vs 

C.W. James, ARENA, 9th-12th June, 2014



Testing against analytic formula: flat surfaces 
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3m boxcar: simulation vs theory 

●  Lines: 5 lines gnuplot code  
●  Points: each a sum of ~8x108 track/facet pieces 

22C.W. James, ARENA, 9th-12th June, 2014
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Flat-surface transmission: 50m depth 

●  Analytic model does not include diffraction! 
●  When estimates differ, the numerical model is (probably) correct 

23C.W. James, ARENA, 9th-12th June, 2014
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Testing for near-surface showers (CR) 

●  ZHS @ 1m: OK when transmitting to infinity? 
●  Caution: analytic results ignore diffraction 

24C.W. James, ARENA, 9th-12th June, 2014

1m/40m 

flat n2=1.0 

n1=1.8 

43-piece 
shower 

PRELIMINARY 
(numerical dials still need turning) 

10-9

10-8

10-7

10-6

10-5

 0  10  20  30  40  50  60  70  80  90

R
 
x
 
F
i
e
l
d
 
s
t
r
e
n
g
t
h
 
(
V
/
H
z
)

e (deg)

100 MHz

1 GHz
analytic
1m depth

40m depth



Preliminary results: ~neutrinos 
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Typical neutrino geometries 

●  Neutrinos: detect ‘skimming’ events (parallel to the surface) 

●  Field attenuation length:  
●  1 GHz: probe to ~10m 
●  100 MHz: probe to ~100m 

●  Simulations for shower profile not yet finished… 

●  What are the effects of surface roughness at high and low 
frequencies? 
●  Angular distribution 
●  Pulse coherence 

26C.W. James, ARENA, 9th-12th June, 2014
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Results with simple 3m, 1 e- track model 

●  ‘3m track’ model, 10m depth, parallel to surface 

27C.W. James, ARENA, 9th-12th June, 2014
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Results with simple 3m track model 

●  100 MHz and 1 GHz at 100m 

28C.W. James, ARENA, 9th-12th June, 2014
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Roughness has similar effects at both freqs! 

●  100 MHz at 100m vs 1 GHz at 10m 

29C.W. James, ARENA, 9th-12th June, 2014
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Time-domain pulses with 3m boxcar at 10m depth 

●  1.0-2.0 GHz bandwidth: time-domain pulses ‘mostly coherent’ 

●  Horizontal polarisation: analytic model predicts none 

30C.W. James, ARENA, 9th-12th June, 2014
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Preliminary results: ~cosmic rays 
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Cosmic rays with the SKA 

●  Pierre Auger runs out of statistics 
●  SKA might detect ~10x Auger cosmic rays above 5x1019 eV 
●  Most promising frequency range: 100-350 MHz (SKA LOW band) 

●  Key questions: does the signal maintain coherence? 

32
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Tentative results: cosmic rays 

●  1020 eV hadronic cascade, 10o angle of incidence, shower max 4.6m 
after initial point 

33C.W. James, ARENA, 9th-12th June, 2014
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Conclusion 

●  First calculation of the effects of small-scale roughness on coherent 
pulses – it works! 
●  Outputs: spectrum, angular distribution, and time-domain pulses 

●  Simulations slow; numeric tuning an art. Comprehensive study still 
needs to be done. 

●  First results: roughness ~equally important over all frequencies for 
neutrinos. May be positive for high-freq CR detection? 

34C.W. James, ARENA, 9th-12th June, 2014

●  Next steps: 
●  Automate numerical tuning 

●  Characterise/quantify  effects 
●  Adapt to Antarctic surfaces? 

 
●  Add lateral spread 
●  Use in sensitivity calculations 



Backup 
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Germany announces intent to leave SKA 

●   “On Thursday 5th of June, 2014, in an official letter signed by Dr. 
Georg Schütte, the State Secretary of BMBF, the German federal 
science ministry, Germany officially informed the SKA Director-
General of its intent to leave the SKA Organisation.” 

●  Priorities: E-ELT, CTA 
●  SKA data access policy: no SKA data for Germany 
●  SKA grant applications: no chance for BMBF funding 

36

VS 

C.W. James, ARENA, 9th-12th June, 2014



37

Track/facet division 

●  Determine errors in plane wave assumption: 

●  Calculate phase errors from track length 
●  If Δϕ > [error_margin], divide track in two 

●  Calculate phase errors from facet size 
●  If Δϕ > [error_margin], divide facet in four (2x2) 

●  The current checks on numerical accuracy are 
far from optimal (e.g. no check in 1/R) 

●  Results presented here required optimisation by 
hand 
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Frequency-dependence of roughness effects? 

●  A deliberate argument for low-frequency effects 

●  Characteristic surface length seen by emission: 
●  Surface roughness: power-law scaling 
●  Effect on the signal: 
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Putting it all together 

●  Ingredients: 
●  Longitudinal cascade profile (1020 eV hadronic cascade) 
●  Random rough surface 

●  For each facet x track x frequency: 
●  Subdivide facet and track to meet far-field requirements 
●  Calculate sub-track radiation on sub-facet using ZHS formula 
●  Apply standard Fresnel transmission to get E1 
●  Calculate outgoing radiation for each outgoing direction 
●  Sum fields coherently, retaining full polarisation/phase information 

●  Numerous numerical dials to turn: 
●  When to subdivide tracks/surfaces 
●  How to subdivide surfaces (z(x1,2, y1,2) is not rectangular…) 
●  Intrinsic roughness of surface 

39C.W. James, ARENA, 9th-12th June, 2014


