ANITA status

David Seckel Univ. of Delaware

June 11, 2014

Topics

- Review ANITA
 - detector
 - analysis: simulation/reconstruction
 - results: neutrino/cos-ray/other
- Analysis improvements
 - ice: propagation and reflection
 - cos-ray energy scale
- Plans for ANITA-III
 - mechanical/data handling/cal sources
 - antennas
 - trigger

ANITA

- Overview
- Neutrino detection
 - event generation
 - event simulation
 - ANITA detector
 - analysis
 - results
- Cos-Ray detection
- Monopoles

• EVA

ANITA Collaboration

Overview

shamelessly borrowed from P. Garham

ANITA will seek the origin of the *highest* energy particles in the universe, by turning the continent of Antarctica into an enormous

Neutrino Telescope

ANITA status, ARENA-14 (Seckel)

Sky coverage

FIG. 19: A false-color map of sky exposure quantified by total neutrino aperture (here given for $E_v = 10^{20}$ eV) as a function of right-ascension and declination for the ANITA-1 flight.

suffers total internal reflection

ANITA detector

- Airframe and payload infrastructure
- Analog front end
 - Antennas
 - Low Noise Amps, filter, splitter
 - Cables/connectors/boxes
- Trigger
 - multistage, narrow dt: reduce accidentals
- Digitizer
 - Low power switched capacitor array
- Efficient data handling

ANITA Payload

- Weight
- Rigidity
- Form-factor
- Power
- Thermal
- Remote

Horizontal E-plane mean relative gain

	L Pol	.¢ Bands	Ц N/m	LZ in Ring Anternais	L3 Top/Bottom &-sectors	Focus
Ī	LR	4	3/8	A-A-A-A	$\phi \phi \phi$	Č is linear
II	V	3 + full	2/3 + full	A — A — A	\/ \/ ¢ \$	V - Geometry prefers V-pol
					ت د د	it bad for -os-ray

Design Parameter	As-built Value & Comments		
# of RF channels	80 = 32 top, 32 bottom, 8 monitor		
Sampling rate	2.6 GSa/s, greater than Nyquist		
Sample resolution	\geq 9 bits = 3 bits noise + dynamic range		
Samples in window	260 for a 100 ns window		
Buffer depth	4 to allow rapid re-trigger		
Power/channel	< 10W including LNA & triggering		
# of Trigger bands	4, with roughly equal power per band		
# of Trigger channels	8 per antenna (4 bands x 2 pols.)		
Trigger threshold	$\leq 2.3\sigma$ above Gaussian thermal noise		
Accidental trigger rate	≤ 5 Hz, gives 'heartbeat' rate		
Raw event size	\sim 35 kB, uncompressed waveform samples		

TABLE I: ANITA Electronics Specifications.

• Key component: Switched Capacitor Array (SCA) by G. Varner.

Operations

- Campaign operations
 - NH preparations
 - McMurdo
 - Flight
 - Recovery
 - Taylor Dome
- C³

ANITA flight(s)

ANITA-I

- · 3 orbits (3×14 days)
- · Ice depth O-4 Km
- · bases

Also: ANITA-LITE

Analysis

- Timing Calibration
- Interferometry
- Backgrounds
 - Thermal (reconstruction amplitude)
 - Anthropogenic (clustering)
- I: 0 neutrino candidates
- II: 1 neutrino candidate

• Limits

Calibration

Interferometry (see talk by A. Romero-Wolf)

Backgrounds

Clustering

TABLE I: Event totals vs. analysis cuts and estimated signal efficier cies for ESS spectral shape 10].

Cut requirement	Passed		Efficiency	2
	Vpol	Hpol		1
Hardware-Triggered Events	~ 26	.7M	-	
(1) Quality Events	~ 21	.2M	1.00	-10
(2) Reconstructed Events	320,722		0.96	
(3) Not Traverses and Aircraft	314,358		1.00	
(4) In Clusters <100 Events	44	4	- `	
(5) Isolated Singles	7	4	0.64	
(6) Not Misreconstructions	5	3	1.00	
(7) Not of Payload Origin	2	3	1.00	/
Total Efficiency			0.61	

Cluster Multiplicity	Number of Clusters		
	Camp	Not Camp	
10-100	8	1	
5-9	7	1	
4	1	0	
3	0	0	
2	1	1	
1	7	5 (Signal Region	

ut on SI

Candidate events

ANITA GZK flux limit

Model & references	predicted Nv	CL,%	
Baseline models:			
Various	0.3-1.0		_
Strong source evolution models:			
Aramo et al. 2005	2.4	85	
Berezinsky 2005	5.1	98	
Kalashev et al. 2002	5.6	99	
Barger, Huber, & Marfatia 2006	3.5	93	
Yuksel & Kistler 2007	1.7	74	
Models that saturate all bounds:			
Yoshida et al. 1997	30	> 99.999	
Kalashev et al. 2002	19	> 99.999	
Aramo et al. 2005	16	99.999	
Waxman-Bahcall fluxes:			
Waxman, Bahcall 1999, evolved sources	1.4		
Waxman, Bahcall 1999, standard	0.5		

Also – no news from GRBs

 $\begin{array}{c} {\rm TABLE \ 1} \\ {\rm List \ of \ the \ 12 \ GRBs \ included \ in \ the \ blind \ analysis} \end{array}$

GRB	Date & Time (UTC)	Right Ascension	Declination	Payload Elevation
~				Angle (degrees)
081228	2008 Dec 28 01:17:40	$2^{ m h}37^{ m m}50^{ m s}.94$	$30^{\circ}51'10 \ 50''$	-41.1
081229	2008 Dec 29 04:29:01.88	$11^{h}22^{m}0^{s}$	$55^{\circ}6'0''$	-55.9
081230	2008 Dec 30 20:36:12	$2^{h}29^{m}19^{s}.51$	$-25^{\circ}8'49 \ 95''$	28.8
081231	2008 Dec 31 03:21:01.93	$14^{ m h}35^{ m m}0^{ m s}$	$-38^{\circ}43'0''$	47.0
090102	2009 Jan 2 02:55:36	$8^{h}32^{m}58^{s}.54$	33°6'51 10"	-26.3
090108B	2009 Jan 8 07:43:23.36	$0^{\rm h}15^{\rm m}0^{\rm s}$	$-32^{\circ}12'0''$	42.9
090109	2009 Jan 9 07:58:29.49	$8^{h}11^{m}0^{s}$	54°48'0''	-59.2
090111	2009 Jan 11 23:58:21	$16^{h}46^{m}42^{s}.14$	$0^{\circ}4'38 \ 21''$	1.7
090112A	2009 Jan 12 07:57:23.11	$7^{\mathrm{h}}27^{\mathrm{m}}0^{\mathrm{s}}$	$-30^{\circ}17'0''$	23.5
090112B	2009 Jan 12 17:30:15.45	$12^{h}51^{m}0^{s}$	$22^{\circ}12'0''$	-26.8
090113	2009 Jan 13 18:40:39	$2^{h}8^{m}13^{s}.63$	33°25′42 85″	-25.7
090117B	2009 Jan 17 $08{:}02{:}02{.}23$	$15^{ m h}32^{ m m}0^{ m s}$	$27^{\circ}36^{\prime}0^{\prime\prime}$	-28.1

ANITA-I analysis

- Event selection
- Strong interferometric amplitude
- 16 events
 - 14 below horizon
 - 2 above
- Consistent waveforms w/reflection
- Correlated with B

Air shower highlites

ANITA status, ARENA-14 (Seckel)

MC and Energy Scale

Analysis improvements

- ice: attenuation (M Stockham)
 - attenuation models based on temp and impurities (from Javaid)
 - validation with CRESIS RDS data
- ice: reflection (J Stockham)
 - attempt model of antarctic surface roughness
- cos-ray energy scale (Zas)

Attenuation (Amir Javaid)

Attenuation

- Center for Remote Sensing of Ice Sheets (CReSIS)
- Radar Depth Sounding (RDS) from West Antarctica
- Model scattering + attenuation to fit RDS.

• why ...
$$P = \int d\Omega \ E^{-\alpha} \ dE = \Omega \ E_T^{-\alpha} = \Omega \ E_T^{-2}$$

 E_T
 $\Rightarrow \ E_T \sim \left(\frac{\Omega}{P}\right)^{1/2}$

- SLAC T-510 (Mulrey, Zilles)
- ZHAireS development (Zas)

SLAC T-510 (Mulrey, Zilles)

- Cherenkov behavior for radiation from "Hall" currents
- Validate scaling with B
- Absolute calibration of charge excess and geomagnetic radiation

ANITA status, ARENA-14 (Seckel)

Adapted from Zas, ARENA 14

ANITA-III (2014/15): improvements

- Mechanical/data handling/cal sources
 - carbon fiber airframe, Li-ion batteries, misc: -450 lbs
 - 10 x storage capacity
 - 10 x bandwidth (Iridium open port)
 - more ground pulsers + HiCal: pulser mounted on second balloon (?)

Antennas

- 8 more horns
- ALFA: ANITA Low Frequency Antenna

• Trigger

- separate neutrino/cos-ray triggers
- improved majority logic trigger
- dynamic beam forming trigger

ANITA-III antennas

- +8 horns in bottom ring
- Big ALFA
 - (ANITA Low Frequency Antenna)

ANITA status, ARENA-14 (Seckel)

ANITA-III trigger (A. Romero-Wolf)

- Separate V/H triggers for neutrinos/cos-ray events
- Improved multi-level majority logic trigger
- Real time beam forming trigger

Real time beam forming trigger (A. Romero-Wolf)

• combine signals from antennas with same field of view to improve signal to noise – choose best Δt 's

Summary

- ANITA-I cosmic-ray detection f > 200 MHz
- ANITA-II best neutrino sensitivity for E>10¹⁹ eV
- Reanalysis of cosmic ray energy scale
 - air index of refraction
 - reflection geometry
- ANITA-III enhancements
 - airframe/data handling/calibration sources
 - antennas: +8 horns/ALFA
 - trigger
 - separate V/H
 - improved majority logic trigger
 - dynamic beam trigger