Shower reconstruction and analysis with ANTARES \& KM3NeT

Florian Folger

MANTS 2013, Garching, 15. 10. 2013

Outline

- Showers in ANTARES
- Simulation
- Reconstruction tools
- Ongoing analyses
- Showers in KM3NeT

Shower simulation in ANTARES

Status quo in shower simulation

Run-by-run based shower simulation of v_{μ} and $v_{e} \mathrm{CC}$ and NC interactions taking into account currently valid

- calibration for optical modules
- optical background
- detector status (line configuration, dead channels etc...)
- Note: no photon scattering included for showers

4 GeV - 100 TeV

Geant-based shower shower particle simulation

Cerenkov light from each individual shower particle, em-shower from parameterized tables

$50 \mathrm{TeV}-100 \mathrm{PeV}$

Geant-based shower shower particle simulation only to a certain level of secondary particles

Cerenkov light from One-Particle-Approximation

One-Particle-Approximation

Idea:

Replace all shower particles by one equivalent electron transferring

- 100% of the energy from $\pi^{0}, \gamma, e^{+}, e^{-}$
- 20% of the energy from π^{+}, π

Possible improvements for future simulations:

- energy-dependent particle weights
(Bachelor thesis of M. Dentler)
- replace each single particle by an equivalent energy without merging them (Multi-Particle-Approximation)
(C. James)

Tau neutrino interactions

Currently not simulated, but estimated from electron neutrino
NC: Identical cross-sections for all three flavours

$$
\Rightarrow \quad n_{\nu_{\tau} \mathrm{NC}}=\frac{n_{\nu_{\mu} \nu_{e} \mathrm{NC}}}{2}
$$

$C C$

$$
\begin{aligned}
& \text { CC: } \quad n_{\nu_{\tau}} \mathrm{CC}=n_{\nu_{e}} \\
& \text { fraction of electron } \\
& \text { neutrinos that interact } \\
& \text { in Glashow resonance }
\end{aligned}
$$

fraction of tauon decays
that produce showers

Studies on tau neutrino simulation are ongoing. (S. Schulte)

Shower reconstruction in ANTARES

Shower reconstruction tools

Q-Strategy

(Q. Dorosti Hasankiadeh)

- Vertex and shower axis reconstruction from geometrical calculations
- Neutrino energy from Monte-Carlo based parameterization

Dusj-Reco (F. Folger)

- Full shower reconstruction using Maximum-Likelihood fits
- PDF tables based on Monte-Carlo NC+CC shower simulations

T-Strategy
 (T. Michael)

- Currently in development
- Intended for point source analyses, focused on angular resolution

Q-Strategy - Hit selection \& vertex reconstruction

Hit selection

cut on time residual window

Vertex
fit
repeat fit routine using selected pulses only

Q-Strategy - shower axis reconstruction

Evaluate the mean of the light vectors from the earliest hit pointing to the other hits

$$
\vec{D}=\frac{1}{N-1} \sum_{i=1}^{N-1} \vec{D}_{i}
$$

The method provides a rough estimation of the direction and can be used to suppress downgoing muon track events.

Q-Strategy - neutrino energy reconstruction

Evaluate an energy estimator ρ that is the total detected charge, corrected by

- light attenuation in water

$$
\rho[\text { a.u. }]=\frac{A^{\text {tot }}}{\frac{1}{N} \sum_{i=1}^{N} \frac{\alpha_{i}}{\left|\vec{r}_{i}-\vec{r}_{s}\right|} e^{-\left|\vec{r}_{i}-\vec{r}_{s}\right| / \tau}}
$$

- PMT angular acceptance

The relation between ρ and the neutrino energy has been parameterized from a fit on Monte-Carlo simulations.

Dusj-Reco scheme

Hit
 selection

Shower
 reconstruction

- Evaluate a rough vertex estimation from the distribution of coincident and big hits
- Apply a cut on the time residual respective this vertex
- 2-step Gulliver maximum-likelihood fit where the likelihood is calculated from Monte-Carlo based pdf values (idea firstly introduced by R. Auer)

probability that the whole event has been caused by a certain shower assumption
probability that one single hit has been caused by a certain shower assumption (stored in tables that were filled from

Monte-Carlo simulations)

Dusj-Reco - Vertex reconstruction

Dusj-Reco - Shower energy and neutrino direction

 reconstruction

3-dimensional table relating for each hit:

- Energy of the shower
- Photon emission angle with respect to neutrino track
- Total expected charge at the vertex

$$
c_{\mathrm{vertex}}=c_{\mathrm{pulse}} \cdot e^{\frac{d}{\lambda w}} \cdot \frac{1}{\alpha} \cdot \frac{4 \pi d^{2}}{A_{\mathrm{OM}}^{2}}
$$

Dusj-Reco - Muon suppression

Muon track events are suppressed with a random decision forest trained with quality parameters

- Final likelihood values
- Time residual chi
square
\Rightarrow Yields a suppression of atmospheric muons by 5-6 orders of magnitude

Percentage of remaining shower events

After the muon suppression cut

Dusj-Reco - Performance

Shower energy	@ 1 TeV		$@ 100 \mathrm{TeV}$		$@ 10 \mathrm{PeV}$	
Vertex median error *	3.5 m	5.2 m	8.4 m			
Interaction time median error	4 ns	7 ns	25 ns			
Neutrino direction median error **	8.4 deg	5.2 deg	37.3 deg			
Shower energy reconstruction offset	-0.3 orders of mag	-0.2 orders of mag	-0.5 orders of mag			
Shower energy RMS error	0.2 orders of mag	0.4 orders of mag	0.6 orders of mag			

* Q-Strategy yields slightly better results.
** T-Strategy is in development to provide a better angular resolution, but has not reached this aim so far.

Shower analyses in ANTARES

Showers in point source analysis

Feasibility study to include point source sensitivity by including shower events
\Rightarrow Already one shower event can help making a 5o discovery

PRELIMINARY
S. Schulte

Recent diffuse flux analyses

\square showers tracks

2008-2010 Q-Strategy	656	$v_{\mu} v_{\mathrm{e}} v_{\tau}{ }^{\star}$ showers	$8.4{ }^{*} 10^{-8}$ *ᄎ	-	Q. Dorosti PhD thesis
2009-2010 Q-Strategy	1000 (scaled)	$v_{\mu} v_{\mathrm{e}} v_{\tau}{ }_{\tau}^{\star}$ showers	$8.3{ }^{*} 10^{-8 \star \star}$	-	L. Ambrogi Master thesis
$\begin{aligned} & \text { 2007-2011 } \\ & \text { Aafit } \end{aligned}$	885	ν_{μ} tracks	$4.7 * 10^{-8}$	$4.8 * 10^{-8}$	S. Biagi finished
$\begin{aligned} & \text { 2007-2011 } \\ & \text { Aafit/ANN } \end{aligned}$	1179	$\begin{aligned} & v_{\mu} \\ & \text { tracks } \end{aligned}$	$4.2 * 10^{-8}$	7.0 * 10^{-8}	J. Schnabel finished
$\begin{aligned} & \text { 2008-2011 } \\ & \text { Aafit/Bbfit } \end{aligned}$	933	ν_{μ} tracks	3.6 * 10^{-8}	-	L. Core ongoing
$\begin{aligned} & \text { 2007-2012 } \\ & \text { Dusj-Reco } \end{aligned}$	1326	$v_{\mu} v_{\mathrm{e}} v_{\tau}{ }^{\star}$ showers	1.6 * $10^{-8 \star \star}$	-	F. Folger ongoing

* Tau neutrino contribution was estimated
$\star \star$ Current shower Monte-Carlo is without photon scattering

2007-2012 shower analysis - sensitivity

Model rejection factor is minimized as function of a 2-dimensional lower cut on

- fitted shower energy
- fitted neutrino zenith
from events that have been reconstructed and selected by the Dusj reconstruction. and zenith cuts

2007-2012 shower analysis - sensitivity

EVENT NUMBERS AFTER
MRF MINIMIZING CUTS

Muon neutrino CC tracks	$\mathbf{0 . 5 3}$	$\mathbf{0 . 4 2}$	$\mathbf{0 . 0 3}$
Muon neutrino NC showers	$\mathbf{0 . 6 5}$	$\mathbf{0 . 2 1}$	$\mathbf{0 . 1 2}$
Electron neutrino CC showers	$\mathbf{6 . 3 8}$	$\mathbf{0 . 1 0}$	$\mathbf{1 . 7 0}$
Electron neutrino NC showers	$\mathbf{0 . 6 5}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 2 0}$
Tau neutrino CC showers *	$\mathbf{3 . 7 5}$	$\mathbf{0}$	$\mathbf{0 . 0 6}$
Tau neutrino NC showers *	$\mathbf{0 . 6 5}$	$\mathbf{0}$	$\mathbf{0 . 0 1}$
TOTAL	$\mathbf{1 2 . 6 1}$	$\mathbf{0 . 7 4}$	$\mathbf{2 . 1 2}$

Sensitivity per neutrino flavour:
$E^{2} \cdot \Phi_{90 \%, \nu_{\mu} \nu_{e} \nu_{\tau}}=1.6_{-0.2}^{+0.5} \cdot 10^{-8} \mathrm{GeV} / \mathrm{cm}^{2} \cdot \mathrm{sr} \cdot \mathrm{s}$

Further development

Recent updates to the shower Monte-Carlo software, that are mainly:

- The inclusion of photon scattering
- More accurate event weighting in the One-Particle-Approximation

First checks with the new MC on the diffuse flux analysis give indications that the presented sensitivities might change to higher values.

But, further more detailed systematic studies are necessary and currently ongoing.

Showers in KM3NeT

Pseudo experiment for high energy showers

First look into PeV NC and CC interaction of electron and tau neutrinos simulated with PYTHIA

Simulation setup contains

- 63 fixed DOMs arranged in xz plane
- fixed neutrino direction in positive direction
- fixed neutrino energy of 1 or 10 PeV
- forced interaction vertex at $(-175,0,125)$

Work is in progress.

EM-Showers along muon tracks

Method to reconstruct the position and energy of em-showers along a muon track via the energy loss profile

1. Reconstruct muon track
2. Project detected photons back on muon trajectory assuming pure Cerenkov emission
3. Evaluate excess in measured photons above the predicted Cerenkov photons (including detector geometry)

EM-Showers along muon tracks

Event 1
Event 2
Event 3
R. Bruijn

Backup slides

Binned Vertex position error vs. MC Shower energy

Binned Interaction time error vs. MC Shower energy

Binned Direction error vs. MC Shower energy

Binned Energy error vs. MC Shower energy

Suppression of atmospheric muons Selection of cut parameters

Selected 5 from 24 possible Dusj cut parameters to be used as features in a random decision forest classification:

- Reduced final likelihood value of the vertex fit
- Reduced final likelihood value of the energy-direction fit
- Time residual chi square with respect to prefit vertex
- Time residual chi square with respect to final vertex
- Quadrupole moment of selected shower pulses

Selection criteria on parameters:

- Good agreement between Data and MC
- Separating values for muon and shower events

Supression of atmospheric muons -

Training of a random decision forest

Used 25% of the burn sample for the training of the RDF with

- 2 classes (muon, shower)
- 100 random trees per RDF
- 3 RDFs (for Line5, Line10

