The sensitivity of PINGU to Neutrino Mass Hierarchy

> MANTS meeting Garching October 14th 2013

Sebastian Böser, Ken Clark, <u>Andreas Groß</u> and Lukas Schulte

Outline

- Neutrino Oscillations, Mass Hierarchy
- PINGU detector
- Reconstruction of low energy neutrinos
- Selection of low energy neutrinos, rejection of backgrounds
- The calculation of the sensitivity

Neutrino oscillations

• Mass eigenstates $v_i = flavor eigenstates v_{\alpha}$

$$- |\nu_{j}\rangle = \sum_{\alpha=e,\mu,\tau} U^{*}_{\alpha j} |\nu_{\alpha}\rangle$$

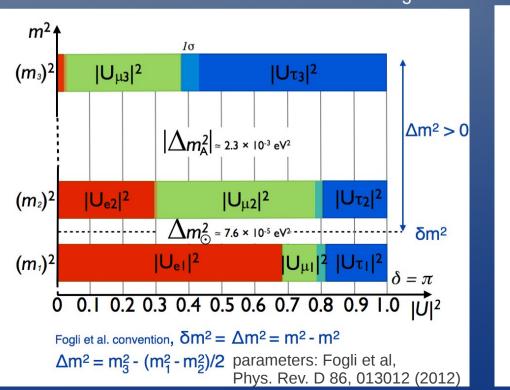
$$- |\nu_{\alpha}\rangle = \sum_{j=1,2,3} U_{\alpha j} |\nu_{j}\rangle$$

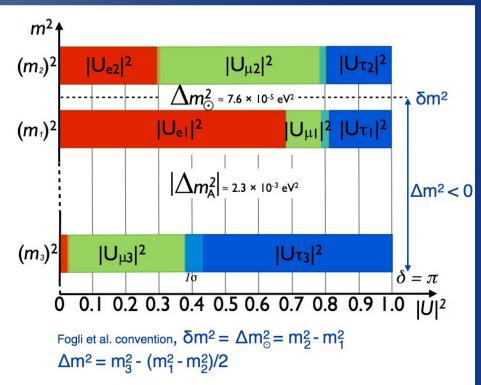
with transition matrix $U_{\alpha i}$ (PMNS^{*}-Matrix)

• Propagation:

 $- |v_i(t)\rangle = e^{-iE_jt} |v_i\rangle$

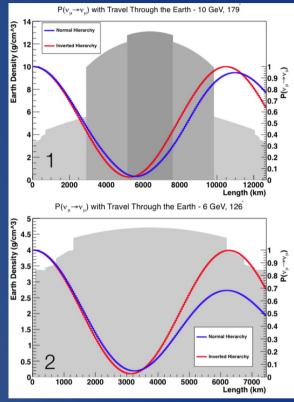
• Resulting transition probability:

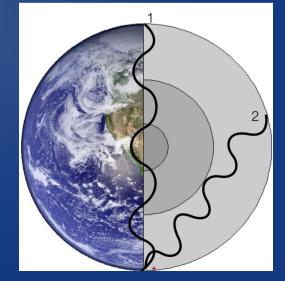

 $\mathsf{P}_{\alpha \to \beta}(\mathsf{E},\mathsf{L}) = \sum_{j=1,2,3} \sum_{k=1,2,3} \bigcup_{\alpha j} \bigcup_{\beta j} \bigcup_{\alpha k} \bigcup_{\beta k} \operatorname{exp}(i \Delta m_{kj}^{2} \mathsf{L} / 2\mathsf{E})$


• Parametrization of U: 3 mixing angles θ_{ii} , complex phase δ

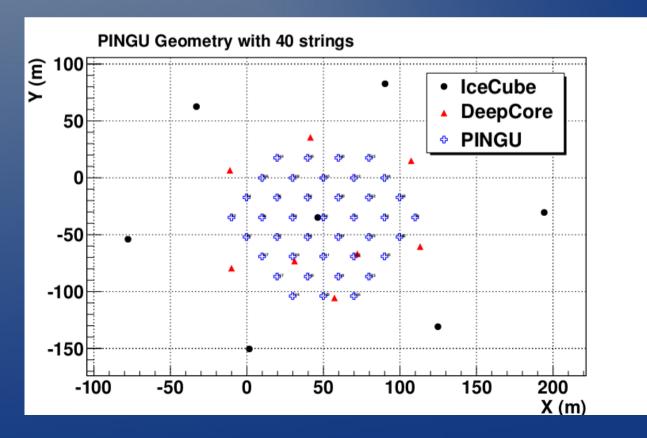
*PMNS-Matrix: Pontecorvo-Maki-Nakagawa-Sakata-Matrix

Status of neutrino oscillation physics


- Known parameters:
 - mixing angles
 - absolute mass differences, mass ordering of v_1 and v_2
- Unknown parameters:
 - Complex phase δ
 - Mass ordering: is v_3 the lightest or the heaviest neutrino?



How we want to measure it?


- MSW effect: neutrino oscillations in matter differ from vaccuum
 - strongest effects for E<10 GeV
- MSW effect depends on hierarchy
- Atmospheric neutrinos: CR interaction in the atmosphere, pion, kaon decay
- Need high statistics of events below 10 GeV
 - This is achievable for ice Cherenkov detectors
 - Use denser instrumentation than for IceCube/DeepCore, ANTARES
 - Instrument a larger volume than for Super-K

Potential design of PINGU

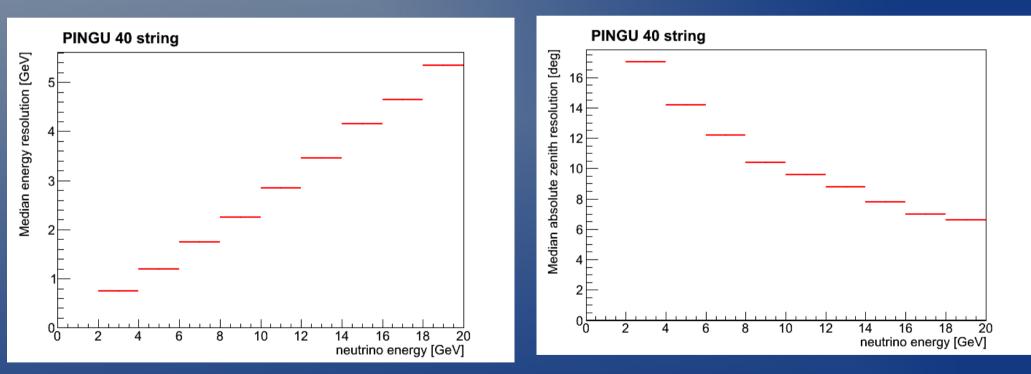
 PINGU (Preciscion IceCube Next Generation Upgrade) is designed to measure the neutrino mass hierarchy with atm neutrinos by reaching a threshold below 10 GeV

Some more technical info

- Wide use of IceCube experience
- Refrozen hole ice has shorter scattering length then bulk ice
 - De-gas water column in the hole before refreezing
- Use more modern in-ice electronics
 - Remove local coincidence condition for data transmission
 - Use only one sampling device
- Deployment of 40 strings realistic in 3 subsequent polar seasons

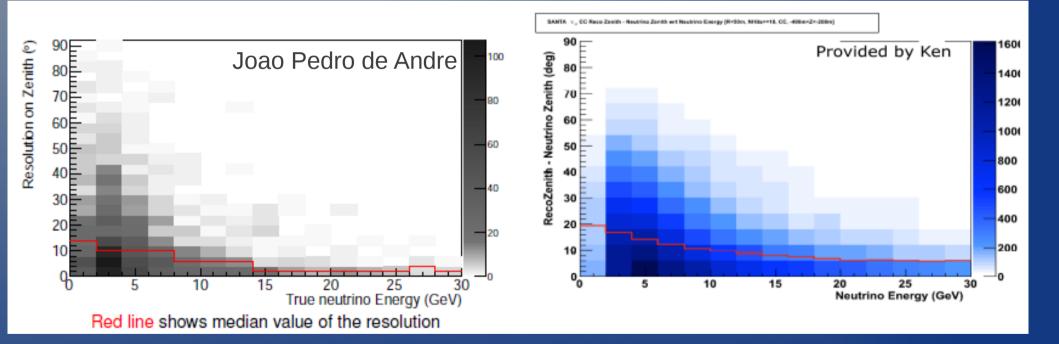
Event reconstruction in PINGU

"first generation"


- Use existing IceCube/DeepCore reconstructions
- Reconstruct cascade and track separately
- Use pure cascade reconstruction for energy reco (output is well correlated)
- Use pure muon reconstruction (based on direct hits – Antares-like) for track reconstruction

"second generation"

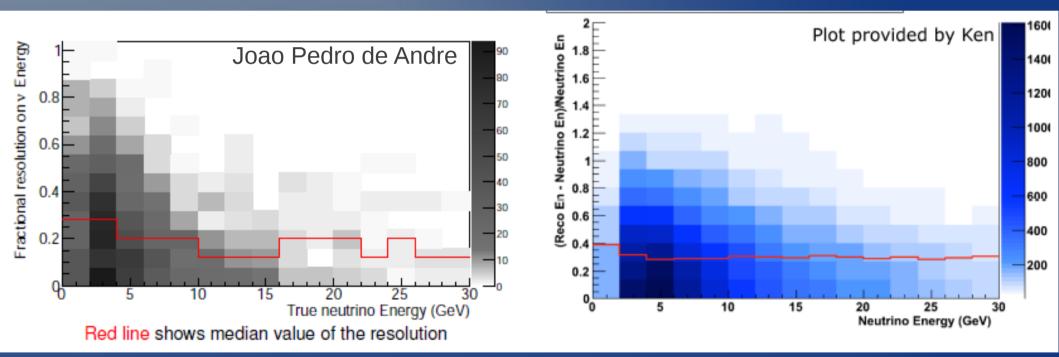
- Developed dedicatedly for PINGU
- Reconstruct cascade and track together
- Use Multinest algorithm for minimum search


Performance of the reconstruction - first generation-

This is the performance we have shown in ICRC, VLVnT etc

But we can do much better... - angular reconstruction -

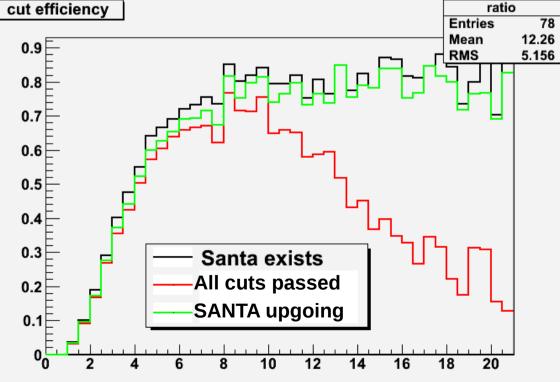
 Performance of the new HybridReco Multinest reconstruction much better



10 deg zenith resolution (median) can be reached above 2 GeV

Multinest: arxiv.org:0809:3437

But we can do much better... - energy reconstruction -


 Performance of the new HybridReco NultiNest reconstruction much better

20% energy resolution (median) can be reached above 4-5 GeV

Event selection

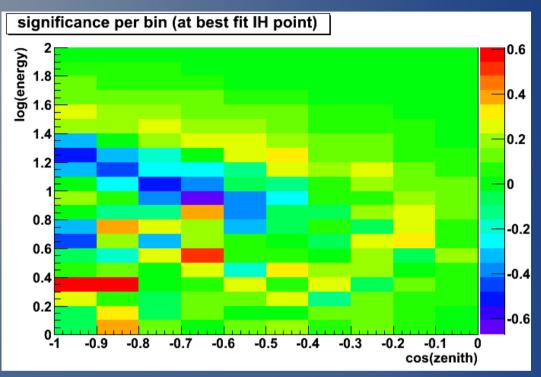
- We can reject the background while keeping a large fraction of the signal
- Here: use track direction, vertex containment, energy reco and hit topology for air shower rejection
- Limiting factor: convergence of 1st generation zenith
 reco

Evaluation of the sensitivity to neutrino mass hierarchy

- We have 3 approaches evaluating PINGU's sensitivity to NMH
 - Fisher Matrix study with parametric resolutions
 - χ^2 study with full MC propagation, Asimov dataset
 - LLH ratio study based on MC pseudo-experiments
- All do include the uncertainty of $\theta_{_{23}}$ and $\Delta m_{_{13}}^2$ as nuisance parameters
- Number of detector systematics included varies for each approach
- We are currently in the process to update these studies for the second generation reconstruction and the new (more efficient) event selection

Strength of different methods

- Fisher: fastest iteration over systematics
- Asimov/ χ^2 : still relatively fast to include many systematics, but includes tails of resolution as well as correlations
- LLH ratio method: Avoids using Wilk's theorem, but slowest to implement systematics
- Common settings for these:
 - 10 bins in cos(zenith) from -1 to 0
 - 20 bins in logE from 0 (1 GeV) to 2 (100 GeV)
 - Same event selection, systematics


Systematics studied so far

- Uncertainty of the absolute energy scale (design goal for PINGU: 5%)
- Uncertainty of the ice parameters and reconstruction performance: parametrized by a 10% bias of counts in vertical vs horizontal bins
- Uncertainty of the atmospheric neutrino flux normalization (30%)
- Uncertainty of the atmospheric neutrino flux spectrum (+-0.05 in the spectral index)

Status

- Unfortunately, we did not process sufficient MC with these new parameters by now
- We extrapolated a statistical sensitivity of 3.0 sigma/year assuming
 - Updated effective area
 - Gaussian resolution of 12 deg in zenith, 30% in energy
 - Only phyiscs nuisance parameters included
- Experience from previous studies
 - Detector systematics reduce by ~0.1-0.2 sigma/year
 - Cascade backgrounds reduce by ~0.5-0.7 sigma/year (assuming no particle-ID – we can do better)

Status

- Resolutions are slightly better than these assumptions
- We will have some particle ID
- Hence, design goal of >=2 sigma/year appears feasable
- Final sensitivity expected in a short time scale