

ICECUBE

PINGU Precision for Atmospheric Oscillation Parameters

Kai Krings

MANTS 2013 Garching, 14th Oct. 2013

Bundesministerium für Bildung und Forschung

Allianz für Astroteilchenphysik

Introduction to PINGU

→ Precision IceCube Next Generation Upgrade

- 20 to 40 additional strings are filled into the DeepCore volume
- Baseline geometry, 40 strings inter-string spacing: 20m inter-DOM spacing: 5m
- Denser spacing
 → v detection threshold of a few GeV

Main Physics Goal

Measurement of the **neutrino mass hierarchy**

 $\Delta m_{32}^2 > 0$ (normal hierarchy) $\Delta m_{32}^2 < 0$ (inverted hierarchy)

In principle, a measurement of the atmospheric mixing parameter Δm_{32}^2 (and Θ_{23}).

→ Need to know these parameters very precisely.

v_µ disappearance analysis

Goal of this Analysis

Analysis Goal

Precise measurement of the atmospheric neutrino mixing parameters with PINGU using DeepCore as a benchmark.

Generated Datasets

- High-statistic v_µ and v_e datasets generated with GENIE/NuGen
- Energy range GENIE: 1–100 GeV NuGen: 50 GeV-10 TeV
- Energy spectrum: *E*⁻²
- SPICE Mie and PPC*
- *Hadronic light yield not correct below 10 GeV.

- 26 m inter-string spacing
- 5 m inter-DOM spacing

Atmospheric Neutrino Oscillations

* calculated with nuCraft, <u>http://nucraft.hepforge.org</u> 4

Adapted Event Selection from IC79

IC79 DeepCore Analysis

by <u>Sebastian Euler</u>

- Background rejection of atm. muons
- Use the outer string layers of IceCube as a veto
- ~10 000 v_µ events per year

Veto Region (RTVeto) All IceCube DOMs besides

PINGU DOMs DeepCore DOMs DOMs on central IceCube string

(below the dust layer)

 \rightarrow Larger veto than for IC79.

Veto Cuts	Directional Cuts
*Q _{tot} (RTVeto) < 3PE	cos(Θ _{LineFit, imp.}) < 0.2
*Q _{tot} (L7Veto) < 5PE	$\cos(\Theta_{\text{SPEFit4}}) < 0.2$
	$\cos(\Theta_{\text{SPEFit32}}) < 0.0$

Containment Cuts	Quality Cuts
N _{Ch} (SRT, PINGU)≥10	N _{Dir} ≥3, L _{Dir} >20m
*1 st HLC inside fid. volume	PLogL <i>3.5</i> < 8
Vertex(finiteReco) inside fid. volume	∆LogL(MPEFit <i>,</i> BayesFit) <i><-17</i>
	4
Fiducial Volume	
Right cylinder	Correlated Noise
	TopologicalSplitter
radius: 80 m	reperegreadpirror
height: 288 m	

Expected Number of v Events

Number of Events

- Electron neutrinos: ~14,000 events/year
- Muon neutrinos:
 ~34,000 events/year
 ~22,000 events/year (osc.)

~12,000 'signal' events (disappeared neutrinos)

- At least twice as much statistics than for IC79
- µ contamination at L7: ~13%
 → down to a few % at L8

* w.r.t. up-going CC events, 1-30 GeV

Energy and Zenith Angle Estimators

Zenith Angle Estimator

- Use muon track reconstructions developed for IceCube.
- Median zenith angle resolution < 25 ° for (anti-) muon neutrinos, CC</p>

 $E_v^{reco} = E_{cascade}^{reco} + l_{track}^{reco} / 4.5 \, m GeV^{-1}$

 Median energy resolution ~35% below 20 GeV

Detector Response to v Oscillations

Detector Response to v Oscillations

- Current DeepCore analyses measure the minimum at ~25 GeV ($\Theta_v = \pi$).
- PINGU is able to resolve the full minimum, including the rising edge.

- \square 1st minimum in the v_u survival prob.
- Effect of further minima/maxima at lower energies
- Both regions are separated.
 - Sensitive to the 1st maximum at about 10 GeV.
 - Yields strong constraints on Δm_{32}^2 .

MC Analysis Method

Likelihood Matching

$$L = \prod_{i,j} L_{Poisson} \left(s_{ij} \mid \{\Delta m_{32}^2, \sin^2(\theta_{23})\}, \{q_k\} \right)$$

$$\times \frac{1}{\sqrt{2\pi\sigma_{\theta_{13}}}} \exp\left(-\frac{\left(\theta_{13} - \langle \theta_{13} \rangle\right)^2}{2\sigma_{\theta_{13}}^2} \right)$$

- Use Poisson statistics to create 1000 pseudo experiments
- Compare pseudo experiments with reweighted MC histograms via likelihood matching to find the best set of parameters
- Treat flux normalizations as continuous nuisance parameters
- Treat O₁₃ as a discrete nuisance parameter (with Gaussian prior)

LLH Scan in Δm_{32}^2 and $\sin^2(\theta_{23})$

Best Fit Values for $\Delta m_{32}^2 \& \sin^2(\theta_{23})$

• Opposite sign in Δm_{32}^2 for 4% of the pseudoexperiments PINGU can measure Δm_{32}^2 more accurately than the World's best fit value.

Nuisance Parameters on the LLH Map

Degeneracy with Nuisance Params.

- No correlation between the best fit values of $\Delta m_{32}^2 \& \sin^2(\theta_{13})$
- Correlation between c_{μ} and $\sin^2(2\theta_{23})$ inhibits a more precise measurement of θ_{23} .

Comparison to other Experiments

Compare PINGU's 90% PINGU (1 year) MINOS 2013 contour to MINOS, T2K T2K prel. and DeepCore DeepCore (6 years) 3.0**Conclusions: PINGU:** 2.8solid NH eV^2 PINGU will be competitive dashed IH after the first year of data. ကို 2.6 $|\Delta m_{32}^2|/10^{-2.5}$ PINGU has the potential to set the World's best constrains on Δm_{32}^2 . 2.2Caveats: 2.00.86 0.88 0.900.920.96 0.980.84 0.94Neutrino rate below $\sin^2\left(2\theta_{23}\right)$ 10 GeV is overestimated. Energy-dependent systematics Julia Leute et al.: are not included yet. MC statistics correspond only to Expected sensitivity for DeepCore 1 year of data.

1.00

after 6 years of data.

Extension to Neutrino Mass Hierarchy

Question:

Assume a certain hierarchy. At which confidence level is PINGU able to exclude the opposite hierarchy?

- Marginalize over $\sin^2(\Theta_{23})$: For each row in Δm_{32}^2 , choose the minimum negative log-likelihood.
- Evaluate significance to NMH via two methods:
 - Based on Wilks' theorem
 - Based on hypothesis test → test statistic

$$\log(L_{_{NH}} / L_{_{IH}})$$

Visible separation between both neutrino mass hierarchies.

Summary and Outlook

Summary

- Next IceCube Upgrade: PINGU
 → Measurement of the neutrino mass hierarchy
 → v_µ disappearance is the first step
- Adapt event selection from I79 DeepCore analysis:
 → Defined a larger veto region.
 - \rightarrow µ contamination expected to be below 10%
- Fit of mixing parameters: → Competitive results already after the 1st year of data → High sensitivity to Δm_{32}^2
- Extension of analysis to the neutrino mass hierarchy
 - \rightarrow Significance can be extracted from the LLH map.
 - \rightarrow Test statistic shows a visible separation between both hierarchies.

Outlook

- Switch to 40-string geometry.
- Implement missing systematics.

Summary and Outlook

Summary

- Next IceCube Upgrade: PINGU \rightarrow Measurement of the neutrino mass hierarchy \rightarrow v_{II} disappearance is the first step
- Adapt event selection from I79 DeepCore analysis: \rightarrow Defined a larger veto region.
 - \rightarrow µ contamination expected to be below
- Fit of mixing parameters → Competitive

nk you for your attention. suncance can be extracted from the LLH map. \rightarrow Test statistic shows a visible separation between both hierarchies.

Outlook

- Switch to 40-string geometry.
- Implement missing systematics.