Particle Identification

John Groh and Tyce DeYoung Penn State University

MANTS 2013 Munich, Germany October 14, 2013

Particle/Flavor Discrimination

- For the neutrino mass hierarchy measurement, v_{μ} CC events are the desired signal
 - Electron neutrinos mainly add noise to the measurement
 - Tau neutrinos are intrinsically anti-correlated with the v_μ disappearance we are trying to measure (although their reconstructed energy is smeared out by the missing energy carried away by outgoing neutrinos)
 - NC events could theoretically carry some information (at least for v_{μ}) but the missing energy and uncertain flavor make this more trouble than its worth
- Determination of the topology (track/no-track) becomes difficult for the small events typical of detectors like PINGU or ORCA
 - Rejection of pure-cascade events could improve sensitivity
 - Measurement of inelasticity could also be useful (Ribordy & Smirnov 2013)

Superluminal Hits

- For small events, the difference between events with tracks and events without tracks can be subtle
 - Many hits are due to light from the vertex cascade, even for v_{μ} CC events
 - Cascade photons are emitted close to the Cherenkov angle for the muon little difference in timing if the emission point is close to the vertex
- We look for a few special "superluminal" hits
 - Detection time too early for propagation at c/n from reconstructed vertex
 - Difference between c and c/n is about 1 ns/m, so this works only at some distance from the vertex
 - Cascades not pointlike some particles do move at c for some distance
 - Uncertainty in actual vertex position and timing calibration complicate matters further

Superluminal Hit Timing

- Charged current muon neutrino events produce substantially higher number of "superluminal" hits
 - Uses MC true vertex information in a simulated PINGU (20-string) detector
 - Neutrino energies from 5–30 GeV with vertices inside PINGU
- Threshold for a hit to be superluminal is about -5 ns, not 0!

An Initial Particle ID Discriminant

- Now use vertex information from an actual reconstruction
 - 8-parameter likelihood fit using the Multinest optimizer
 - Baseline (40-string) PINGU geometry
- Signal sample is v_µ CC events with interaction vertex within the PINGU volume and track length greater than 15 m
 - Roughly $E_{\mu} > 3 \text{ GeV}$
 - Cumulative distributions shown as a function of PEs in (-200, -6) ns window

Tyce DeYoung

Aspen Neutrino Workshop

June 18, 2009

Efficiency and Performance

- One possible cut value: Q_{SL} > 4 PE
 - Could be folded into analysis as a likelihood term rather than a cut
- Good rejection of NC events with fairly low loss of track-like signal
 - Correlation with other cuts not yet investigated

