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Method of the fit: exhaustive search 
•  simulate cascade events with various x,y,z,θ,ϕ (and fit for E,t0), and 
compare them to the data event. 
•  optionally for each new track simulate cascades of equal energy 
spaced along the track and solve for best combination (next slide) 
•  the simulated event that looks most like the data event is the result 

 
Advantages: 

•  simple and robust 
•  most precise description of ice can be used in reconstruction 
(SPICE Lea ice model: including tilt and anisotropy) 

 
Drawbacks: 

•  can be very slow (~1 day/event) 
 



Track reconstruction 
For each new track given by x,y,z,θ,ϕ,t0, simulate cascades of equal energy at 
equal intervals along the track. 
 
 
 
 
 
 
 
 
Each cascade i creates hits in DOMs/time bins j: leaving charge Qij. 
 
For the pattern of hits that we actually have in data, qj, we can find the best 
representation of the event in terms of the simulated cascades by creating a 
weighted superposition (linear combination) of the cascades i. 
 
This can be done by maximizing the limited-simulation-statistics likelihood 
(LSSL) against the weights, starting with an NNLS solution to qj=wiQij. 
 
This is done for different t0 and the t0 maximizing the likelihood is chosen. 



Comparing a simulation event with 
a data event 

Use the same likelihood function as in the SPICE Lea fit: 
includes Poisson fluctuations in data, simulation, and a 20% 
allowance for non-Poisson errors (in description of ice and others). 

 
All feature-extracted waveforms (charge histogram vs. time in a DOM) are 
binned in 25 ns bins, and then processed with a Bayesian blocks 
procedure, which combines low-count or nearly-same-charge bins. 

This is the same procedure as was used in the SPICE Lea fit. 
 
 
So, we are using exactly the same comparison procedure as was used in 
the ice model fit (here: SPICE Lea). 



LSSL description 

There is an obvious constraint 

which can be derived, e.g., from the normalization condition 

Suppose we repeat the measurement in data nd times and in simulation ns times. 
The µs and µd are the expectation mean values of counts per measurement in 
simulation and in data. 
 
With the total count in the combined set of simulation and data is s + d , the 
conditional probability distribution function of observing s  simulation and d  data 
counts is 
 



Two hypotheses: 
If data data and simulation are unrelated and completely independent from each 
other, then we can maximize the likelihood for µs and µd independently, which 
with the above constraint yields 

On the other hand, we can assume that data and simulation come from the same 
process, i.e., 

We can compare the two hypotheses by forming a likelihood ratio  



Example 

To enhance the differences between the two likelihood approaches, consider 
that the amount of simulation is only 1/10th of that of data 

200 

2000 



Using full range of the data and simulation Simulated exp(-x/5.0) with mean of 5.0 



Search algorithm 
1.  Start with x,y,z of COG, θ=0, ϕ=0, E=105 GeV, t0=0 

2.  Propose 25 sets of cascade parameters x,y,z,θ,ϕ from a gaussian distribution 
with rms=10 m in x,y,z and rms=30 degrees in θ,ϕ. Keep the values of E and t0. 

3.  For each proposed simulated event find the best E (by scaling the simulated 
event) and t0 (by time-shifting the hits in the simulated event); calculate the 
likelihood L. 

4.  Out of these 25 event select the one with the best value of L and update the 7 
cascade parameters; remember the best value of L: L*. 

5.  Repeat steps 2-4 40 times. Use 20 events resulting from step 4 with the best 
values of L* to update the rms in x,y,z, and rms in θ,ϕ, and to establish 
correlation between these (important since the brightest point of the cascade is 
some distance away from the starting point along the cascade direction; also the 
Cherenkov light is emitted predominantly forward). 

6.  Repeat steps 2-5 10 times; The final result is calculated by averaging simulated 
events with the best 160 values of L*. The rms of x,y,z, and the rms in θ,ϕ are 
also computed to provide a measure of uncertainties. 



Other search algorithms and 
uncertainties 

The algorithm described on the previous slide is an optimized variant of 
•  Localized random search. 

 
Other methods that I tried are: 

•  Simultaneous perturbation stochastic approximation with and without 
the estimate of the second derivative (Newton-like method). 

•  Markov chain with transitional probability defined by condition Li+1<Li. 
 
 
Although the rms values in cascade parameters obtained in the localized 
random search and Markov chain methods are probably related to the 
uncertainties of the measurement, the well-defined values of the 
uncertainties should probably be calculated by applying the reconstruction 
to a few (dozen?) cascade events simulated with the same parameters. 



Uncertainties with ABC 

ABC (Approximate Bayesian Calculation) solves for an approximation to the 
posterior PDF when the likelihood function is not known or its calculation is 
intractable. 
 
We need a distance (in this case LSSL comparing simulation sets with data) 
and consider steps sampled from a proposal distribution which result in the 
distance smaller than a pre-set upper bound. All such steps are accepted. 
 
This is a reversible Markov Chain, with a stationary distribution being the 
posterior parameter PDF for events similar to the data event with LSSL<bound. 
This approximates the parameter PDF for the actual given data event. 
 
Statistical sampling is possible (performed for Bert). It is unclear if the 
systematical uncertainties can be included in this sampling procedure (due to 
curse of dimensionality). 



Track reconstruction in 28 HE 
events 

Only 1 event out of 28 was reconstructed with the reconstructed track going 
through the hits left by the muon. 
 
In the other 6 events containing a track along with the interaction cascade 
the contribution to the likelihood from the smaller losses along the track are 
“washed out” by the fluctuations in the large contribution from the 
interaction cascade. 
 

 à this results in track missing the smaller hits left by the muon. 
à possibly solved by over-simulating, however a factor x10 did not 
help (although only tried on the first 3 muon events) 

 
 
 
 



Loss pattern along track 

Dr. Strangepork Bert 



llh vs. step number 

Dr. Strangepork Bert 



z vs. llh 

Dr. Strangepork Bert 



llh 
1…200    all   201…400 

Dr. Strangepork Bert 



z 
1…200    all   201…400 

Dr. Strangepork Bert 



t0 vs. E 

Dr. Strangepork Bert 



E 
1…200    all   201…400 

Dr. Strangepork Bert 



t0  
1…200    all   201…400 

Dr. Strangepork Bert 



y vs. x 

Dr. Strangepork Bert 



x 
1…200    all   201…400 

Dr. Strangepork Bert 



y 
1…200    all   201…400 

Dr. Strangepork Bert 



θ vs. ϕ  

Dr. Strangepork Bert 



ϕ  
1…200    all   201…400 

Dr. Strangepork Bert 



θ  
1…200    all   201…400 

Dr. Strangepork Bert 
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Likelihood: 
 

•  Likelihood description for comparing data with simulation (LSSL: 
limited simulation statistics likelihood), arXiv:1304.0735 
•  DirectFit (and updated ice model): arXiv:1309.7010 (ICRC, Rio) 

 
DirectFit experimental code: 
 

http://icecube.wisc.edu/~dima/work/WISC/ppc/bkp/llh.tgz 
http://code.icecube.wisc.edu/svn/projects/ppc/trunk/private/ppc/llh/ 

 
 



Cudatest: lean and mean 
ice fitting machine 

cudatest: 
 
Found 6 devices, driver 2030, runtime 2030 
0(1.3): GeForce GTX 295 1.296 GHz G(939261952) S(16384) C(65536) R(16384) W(32) 

 l1 o1 c0 h1 i0 m30 a256 M(262144) T(512: 512,512,64) G(65535,65535,1) 
1(1.3): GeForce GTX 295 1.296 GHz G(939261952) S(16384) C(65536) R(16384) W(32) 

 l0 o1 c0 h1 i0 m30 a256 M(262144) T(512: 512,512,64) G(65535,65535,1) 
2(1.3): GeForce GTX 295 1.296 GHz G(939261952) S(16384) C(65536) R(16384) W(32) 

 l0 o1 c0 h1 i0 m30 a256 M(262144) T(512: 512,512,64) G(65535,65535,1) 
3(1.3): GeForce GTX 295 1.296 GHz G(938803200) S(16384) C(65536) R(16384) W(32) 

 l0 o1 c0 h1 i0 m30 a256 M(262144) T(512: 512,512,64) G(65535,65535,1) 
4(1.3): GeForce GTX 295 1.296 GHz G(939261952) S(16384) C(65536) R(16384) W(32) 

 l0 o1 c0 h1 i0 m30 a256 M(262144) T(512: 512,512,64) G(65535,65535,1) 
5(1.3): GeForce GTX 295 1.296 GHz G(939261952) S(16384) C(65536) R(16384) W(32) 

 l0 o1 c0 h1 i0 m30 a256 M(262144) T(512: 512,512,64) G(65535,65535,1) 

3 GTX 295 cards, each with 2 GPUs 

PSU 

0 and 1 
4 and 5 
2 and 3 

nvidia-smi -lsa 
 
GPU 0: 

 Product Name   : GeForce GTX 295 
 Serial    : 1803836293359 
 PCI ID    : 5eb10de 
 Temperature   : 87 C 

GPU 1: 
 Product Name   : GeForce GTX 295 
 Serial    : 2497590956570 
 PCI ID    : 5eb10de 
 Temperature   : 90 C 

GPU 2: 
 Product Name   : GeForce GTX 295 
 Serial    : 1247671583504 
 PCI ID    : 5eb10de 
 Temperature   : 100 C 

GPU 3: 
 Product Name   : GeForce GTX 295 
 Serial    : 2353575330598 
 PCI ID    : 5eb10de 
 Temperature   : 105 C 

GPU 4: 
 Product Name   : GeForce GTX 295 
 Serial    : 1939228426794 
 PCI ID    : 5eb10de 
 Temperature   : 100 C 

GPU 5: 
 Product Name   : GeForce GTX 295 
 Serial    : 2347233542940 
 PCI ID    : 5eb10de 
 Temperature   : 103 C 

As fast as 900 CPU cores 



GZK9000 GPU Cluster 
Deployed in 2012 at the WID/MIR datacenter (shared with CHTC @ 30%) 
 
12 servers, each with 

 2x AMD 6176 ( 12 cores/CPU) 
 4x GPUs Nvidia Tesla M2070 (448 CUDA cores/GPU) 

 
 





Performance vs. Price 







Production optimizations 


