IceCube++/ DekaCube/
DecaCube

Part I - Introduction



David Altmann / Christopher Wiebusch (david.altmann@desy.de) MANTS Meeting Munich October 15<sup>th</sup>, 2013

# What will IceCube++ be?

- HE extension to IceCube
- About 100 additional strings
- Increased spacing between strings provides large volume

#### How does it look like? (Answer: awesome ;) )



david.altmann@desy.de

### PeV muon track in IC++ (125m)



October 15<sup>th</sup> 2013

# PeV muon track in IC++ (250m)



October 15<sup>th</sup> 2013

# PeV muon track in IC++ (375m)



October 15<sup>th</sup> 2013

# Effective Area for NuMu



Does not scale with volume

October 15<sup>th</sup> 2013

### Then came HESE

- We want cascades
- We want containment

• How does IC++ performs for cascades?

# Effective Area for NuE cascades



- Nchannel >= 15
- Nstring >= 3

# That would be an Ernie/Bert event ...

#### 375m is not feasible for contained tracks/cascades → 250m spacing prefered

October 15<sup>th</sup> 2013

\*\*\*\*\*\*\*

- Geometry optimization for contained events
- Veto options





# DECACUBE – ICECUBE++ - PART II

#### A large optical extension of IceCube for future neutrino-astronomy in the TeV-PeV range on the DecaCube-scale

David Altmann<sup>1</sup> and Christopher Wiebusch<sup>2</sup>





- 1. Estimates for in ice veto
- 2. Ideas for an Air-Cherenkov surface veto



# Baseline



- We are observing a weak astrophysical flux with IceCube below the threshold of new technologies (Radio & Acoustics)
- Add 100 optical strings (invest 80 M€, 5 years installation)
- Free design parameter: string spacing: 120m->360m
- Results for Tracks
  - Effective area increases about with linearly with spacing
  - Energy threshold scales moderately with spacing (2TeV (120m), 10TeV (240m), 50 TeV (360m))
     ⇒ galactic sources still in reach !
- Results for Cascades
  - Effective Volume for Cascades increases quadratically with spacing according to increase of geometrical volume
- How about Veto and starting track capabilities? We have learned, these capabilities are crucial for a next generation instrument which wants to detect the sources!

#### Symmetrical geometry (spacing 240m)





- +100 strings
- 4-3 layers of outer strings around IceCube
- ~7 km<sup>3</sup> volume

#### 240m results:

- Muons: 3x IC3
- Cascades : 7x IC3
- $E_{thresh} \leq 10 \text{ TeV}$



#### Starting events estimation (A)



HESE volume 0.4 Gton

Outer strings improve veto :

- ✓ 3 outer layers more than sufficient (Result from DeepCore)
- Bottom veto is obsolete
- Dustlayer veto is obsolete
- Full IceCube volume can be used to the side - edges
- + 1 outer ring if 4 layers

# Unidirectional DOMS & High QE PMT -> better Veto !

#### DecaCube strongly improves starting event capabilities



| Config   | eff. Vol.<br>Gton | #events<br>>30TeV /a |
|----------|-------------------|----------------------|
| HESE     | 0.4               | 14/a                 |
| Full IC3 | 0.9               | 31/a                 |
| + 1 Ring | 1.4-1.8           | <b>49-63 /</b> a     |

#### Starting events estimation (B)

#### Assume:

- One outer layer veto (but thicker Top Veto)
- atm. μ veto threshold increases with spacing
- No unidirectional DOMS & High QE PMT

HESE volume can be extended if threshold is raised by factor ~2

Note that atmospheric neutrino BG (prompt/conventional) decrease

DecaCube will yield a factor 10 increased Ernie&Bert sample

| Config                 | Volume<br>Gton | #events<br>>60TeV /a | #events<br>>200 TeV /a | #events<br>> 1PeV /a |
|------------------------|----------------|----------------------|------------------------|----------------------|
| HESE                   | 0.4            | 8                    | 3                      | 1                    |
| + 1 outer<br>veto ring | 3-5            | 60-100               | 22-37                  | 7-12                 |





## Ideal world: Surface veto

#### Extended IceTop (of course)

- not possible to the most interesting horizontal regions
- Exploit (non-)imaging air cherenkov technique
- New telescope concept FAMOUS for FD detection
  - Based on SiPM 30-40% uptime (demonstrated by FACT)
  - imaging strongly helps in NSB background rejection (1/3000) and allows a lower threshold (critical for inclined directions)
  - VHE gamma astronomy
  - Acceptance similar to non-imaging
- Price  $\infty$  # pixel  $\infty$ 1/ (FOV/pixel)
- $E_{thresh} \sim 50 \text{ TeV} (p) \propto (FOV)^{1/2}$











FOV limited by maximum SiPmt size 502.1 mm Fresnel lens • Camera pixel = Winston cone + 6x6 mm<sup>2</sup> SiPM 1.5 ° field of view per pixel 12 ° fjeld of view in total 549.7 mm 139.4 mm Light Winston cone 22.4 mm • Fresnel lens transmission 70 % UV-pass • Transmission to SiPM surface 55 % Filter SiPM 17.4 mm 64 pixel camera

Niggemann et al ICRC 2013, 0014

Designed for Flourescence Detection in Auger ... should work for Air Cherenkov, too

#### Duty Cycle of SiPM cameras: Demonstration by FACT

- Very stable operation (~5%) also during full moon demonstrated
- SouthPole: 40%/year achievable ? (needs in.situ tests)
- SiPM cannot be damaged by bright light (PMT need protection)
- No High voltage needed



Showers recorded during observation of the full moon







#### First light with the FAMOUS-7 prototype

Auger Students, in the background: University hospital RWTH



# Energy threshold







Energy threshold : Opening window  $\emptyset$ 55cm-> 0.25m<sup>2</sup> (Hiscore:1m<sup>2</sup>) FACT = 400GeV@9.5m<sup>2</sup>  $\Rightarrow$  15 TeV ( $\gamma$ ) Factor 2 for hadrons:  $\Rightarrow$  30TeV

Factor 2-4 for horizontal hadrons  $\Rightarrow$  <u>60-120 TeV</u>

- Sub threshold data possible, when triggered by InIce
- Entrance window can be enlarged

Niggemann et al ICRC 2013, 0014



#### Cost estimate

6x6mm SiPMT FOV 1.6° per pixel-> 6.12  $10^{-4}$  sr/pix For a zenith region > 40°-80° = 1.18 $\pi$  sr =3.72 sr

| Price per Telescope (Famous Pro<br>64 Pixel=256 channel | total      |        |
|---------------------------------------------------------|------------|--------|
| Pixel: 6x6 mm <sup>2</sup> SiPm (4 chan.)               | 250€ x 64  | 16k€   |
| Electronic (Easy Roc) 32<br>channel +LV                 | 1000€ x 8  | 8k€    |
| Mechanics, Lens                                         | 1200€      | 1.2k€  |
| Comms + SC                                              | 1000€      | 1k€    |
| Total                                                   | 400€/pixel | 26.2k€ |

# Pixel  $\propto$  1/ FOV FOV limited by (current) maximum SiPmt size



- Costs can be greatly reduced for mass production (10\$/piece for 100k SiPM) and larger SiPM area (FOV) possible
- Compared to 100 strings (80M€), this is a small investment for a significantly improved veto @30% duty cycle
- Full sky coverage can be achieved- (factor 2 of costs)
  - Hybrid cross calibration with IceTop&IceCube , energy calibration of IceTop with fluorescence light, gamma astronomy, CR below the knee



#### Summary



- DecaCube with 240 m spacing is a good baseline to reach ~7km<sup>3</sup>
- Might achieve significantly improved starting events capabilities with a factor 10 increased event rates, compared to IceCube
- A surface veto based on SiPM air cherenkov detectors in addition to a conventional IceTop extension looks promising to achieve a horizontal veto with 30-40% duty cycle and <50TeV primary threshold

More work needed:

- Full MC simulation of DecaVube
  - Redo simulations with an optimized geometry
  - Test for veto capabilities
  - Simulate surface veto

#### Imaging versus non-imaging



- Non imaging allows a wide field of view with much fewer channels -> lower price
- HIGHSCORE acceptance:  $A \approx 1 \text{ sr}$  0.5m<sup>2</sup> = 0.5 m<sup>2</sup> sr
- FAMOUS acceptance/pixel A  $\approx 6.12 \ 10^{-4} \ sr \cdot 0.25 \ m^2 = 1.5 \ 10^{-4} \ sr$
- Night sky background (La Palma): 3.3 10<sup>12</sup> (m<sup>2</sup> s sr)<sup>-1</sup>
- NSB: Highscore/Famous: 1,700  $10^9 \text{ s}^{-1}$  / 0.5  $10^9 \text{ s}^{-1} \approx 3000$
- Larger SiPM would allow for a compromize of smaller FOV (threshold) and # channels
- Need more investigations:
  - Energy threshold is critical for large inclinations
  - Boreal lights at the South Pole
  - Operation during moon

#### **Question is open:**

⇒ Need a dedicated MonteCarlo Study

# Spacing 1 - 120m



#### Spacing 3: 360m

ի եր է ԱՄԱ մենքարա Մեկտի հայ հեների ինչությունների այս որողի դարը դման 🖬 հենեկների արտաքներին հենհերհարանական հայ հետ հայ հ



#### Spacing 3: 360m



(energy loss increases linearly)



#### Improvement Factor w.r. IceCube-86



# Cascades (new result) Improvement Factor w.r. IceCube-86



- Improvement  $\infty$  Volume  $\infty$  d<sup>2</sup>
- Large spacing fully effective only > 30 PeV

Go for now with option 2