The km3 monte carlo package: description and performance

C.W.James, MANTS, Garching, Oct 2013

KM3Ne1

Principles

C.W.James, MANTS, Garching, Munich Oct 14th-15th 2013

Km3: photon propagation and PMT hits

- Some particles (fast or unstable) come near the detector what do you see?
- Method 1: Full MC (HOURS, CLSIM, AASIM)
 - Simulate particles and light production
 - Track photons directly to detector to get hits
 - Time per event: N_{photons} (+ small 'detector structure' term)
- Method 2: Histogramming (km3, photonics)
 - Simulate particles & light [many times; once]
 - Histogram output [imperfect process]
 - Sample over N dimensions to get hits
 - Time per event: N_{pieces} x N_{pmts}
- Histogramming saves time at the cost of histogram inaccuracy.

Histogramming in km3 (and water)

- Emitting particle type/energy
 - 4 electron energies (10², 10³, 10⁴, 10⁵ MeV)
 - 1 muon energy (10⁵ MeV)
- Distance from track segment
 - 18 log-spaced bins in r for all photons
- Angle from track segment
 - 1 bin for direct photons from muons
 - 20 bins for all other cases
 - OM orientation (in angles θ, ϕ)
 - Direct: 40, Scattered: 240
- Hit times (t)

 θ_0

- 100 bins in time
- · Water isotropic: applies to entire detector

Fig. stolen from C. Kopper from when he was one of us

The km3 package: gen, hit, and km3mc

e⁻, 10 GeV e⁻, 100 GeV μ, 100 GeV

- Gen:
 - generate photons from GEANT 3.21simulated) short particle track segments
 - write photons to disk
- Hit:
 - read gen photons
 - create probability tables
- Km3mc
 - Step 1: generate muon & secondary tracks (use MUSIC) km3mc

100 Me e⁻, 1 GeV

- Step 2. : interpolate between, and sample from, tables to get photons from tracks
- Coded in fortran 77 ⊗
- Now version 5.0: previous 4.5, 4.4 ...

5

Gen (physics lives here)

- Source simulation: GEANT 3.21
 - 1m minimum-ionising muon tracks
 - Single energetic electrons
- Generate Cherenkov photons from GEANT subtracks.
- Propagates photons using (wavelengthdependent) scattering and absorption.
- Records photon properties to disk at each of several spheres.

Gen output:

• Writes photon information at each shell:

$$N_{\rm shell}, N_{\rm scat}, \, \vec{x}, \, \vec{k}, \, t$$

- Writes only a fraction of the photons generated.
- Fraction increases with distance
- (less photons make it to outer shells)
- Repeat for:
 - 1 muon track energy (100 GeV)
 - 4 electron energies (0.1,1,10,100 GeV)
- Major disk-space requirement!
 - Total output size: ~90 GB
 - Run-time: <1 day. Do this once.

- $N_{\rm shell}$ current shell number
- $N_{\rm scat}$ number of scattering interactions
- *x* position on shell
- \vec{k} direction vector & wavelength
 - time at shell

t

Hit (the boring program)

- Photon list -> summary histograms
 - Reads photon data from Gen.
 - Fold in optical module response.
 - Make hit probability and hit time histograms

- Summary tables -> file.
 - Inverse cumulative time distributions & hit probabilities.
 - All tables for given [gen] particle type/energy
- Completely deterministic

Km3mc: the program that gives you photons

Interpolate geometry, get number and time of hits

Muon tracks: direct and scattered photons separate Electron showers: direct added to scattered distribution No hadronic cascades!

One Particle Approximation (OPA) Principles

- Two steps
 - #1: weight each particle with a 'Cherenkov light production efficiency weighting' w_i relative to an electron
 - #2: combine all weights from a cascade into one particle (e-)

- OPA implemented in km3 v4r5
 - Weights functions of energy
 - Weights for miscellaneous particles (e.g. κ^+ , *p*,*n*) currently calculated as per pions

Problems with OPA at ORCA energies

- Low-energy regime:
 - Rest-mass significant
 - Current OPA: crude adjustment for rest mass
 - Hadrons behave differently

$$w_{p}(E_{p}) = w_{\pi}(E'_{p})$$
$$E'_{p} = E_{p} - (M_{p} - M_{\pi})$$

Multi-Particle Approximation (MPA) Principles

- Two One steps
 - #1: weight each particle with a 'Cherenkov light production efficiency weighting' w_i relative to an electron
 - #2: combine all weights from a cascade into one particle (e⁻) treat each particle as an electron with its original direction

C.W.James, MANTS, Garching, Munich Oct 14th-15th 2013

KM3: Performance

C.W.James, MANTS, Garching, Munich Oct 14th-15th 2013

Histogramming tests – 'spheres'

- How to test km3 histogramming?
- Compare it to actual gen output!
- Gen:
 - Place EM cascade at origin
 - o/p: photon times on spheres
- Km3:
 - Sphere of 1000 OMs
 - 1000 EM showers w random orientations
 - x10 artificial photons for better stats
- Histogramming:
 - Averages over all angles
 - Single radial and energy interpolation
- Total normalisation will be arbitrary

Results – worst case

- Gen 33 GeV electrons (bins at 10-100 GeV)
- 60m radius (bins at 55 and 67 m)

 5ns resolution: 5% maximum error in very fine time detail (expect 3% from random PMT orientations)

Performance: muons

- Compare new and old versions of km3
- How stable is it (inc. changing inputs)?

hits per event per ns

d = 25 m

PMT

Performance: OPA

- Source simulation: GEANT 3.21
 - 1m minimum-ionising muon tracks
 - Single energetic electrons
- Generate Cherenkov photons from GEANT subtracks.
- Propagates photons using (wavelengthdependent) scattering and absorption.
- Records photon properties to disk at each of several spheres.

OPA performance: ANTARES

- 28m: small changes in distribution evident
- Very large speed-up: this is important!
- Will be better for KM3NeT

OPA performance: ORCA (smaller distances)

- Small distances cascade structure becomes visible
- Might be important for ORCA

Summary

- Km3: current simulation package to model ANTARES detector response
 - Incomming muons -> muon tracks and EM sub-showers
 - Sources -> photon hits
 - Accuracy limited by knowledge of e.g. scattering, absorption
 - Used also (but not solely) for KM3NeT and ORCA
- Handles hadronic cascades via one-particle approximation
 - KM3NeT/ANTARES: 'pretty good'
 - ORCA: some open questions
- Constantly updated current version v5r0

