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•  Information via photons:
•  Number ~ energy
•  Direct photons ~ direction

•  Physical mechanism:
•  Vertex physics
•  Particle propagation
•  Cherenkov emission

Detectors see showers and tracks via photons

•  What is the effect of intrinsic fluctuations in the 
physics?
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Principles

•  What is the best we can do if we detect 
every single photon?
•  Simulate many identical events
•  Look at fluctuations in photon output and track 

behaviour

•  Given we detect only some photons, 
what’s the best we can do?
•  Estimate mean detector response
•  What minimum error does this give us?
•  Always make optimistic assumptions on detector 

response

C.W.James, MANTS, Garching, Munich Oct 14th-15th 2013 3



Muons: tracklength and deviation

•  10 Muon tracks, 3-13 GeV:

•  They are not perfect straight lines (direction error)
•  Length also differs (energy error)

C.W.James, MANTS, Garching, Munich Oct 14th-15th 2013 4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.5  1  1.5  2  2.5  3

m
/G

eV

R (m)

L
E



Showers: vertex effects

•  2 events: same momentum transfer at the vertex

•  Additional source of variation:
•  Composition of the cascade
•  Energy/momentum of recoil nucleus
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Principles

•  Muons
•  Energy: estimate using true muon track length
•  Direction: use a linear fit to the track

•  Showers:
•  Energy: estimate using total detected photons
•  Direction: mean photon direction – using direct photons 

only.
•  Assumptions: always make optimistic ones!

•  Know where photons come from
•  Perfect vertex reconstruction
•  Do not model detector effects
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MUON TRACK FLUCTUATIONS



Muons: energy (method) 

•  Muon energy - estimate it through the tracklength 

•  ‘MUSIC’: muon tracking in km3 
•  output muon track information for many events 

•  Run muons of a given energy, record tracklength 

8
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ΔL = L − 4.25 E
1 GeV

Black: data 
Blue: gauss fit 1 
Red: gauss fit 2 

ΔL

•  Fit using gaussians: use 
•  central peak (fit 1) 
•  all data (fit 2) 
•  Simple root mean square 

Courtesy J. 
Hofestädt 



•  Intrinsic spread from physical fluctuations 

•  Approximately 8% muon energy resolution 

Muons: energy (results) 

9

ΔE = ΔL
4.25 m

Black: rms 
Blue: width 1 
Red: width 2 
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Muons: direction (method)

•  How straight are muon tracks?
•  Run 2000 muons over 0-20 GeV range with GEANT 3.21
•  Get x(z) and y(z) with simple linear fit
•  Obtain angular offset
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θ = cos−1 v̂ fit ⋅ ẑ( )



Muons: direction (results)

•  Estimation of intrinsic variation:

•  10 GeV muons: ~4o intrinsic error
•  Work still needed to characterise this (true dist 2D)
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SHOWER FLUCTUATIONS



Showers: definitions

•  Outgoing particles:
•  Boson (B) + target (T) -> remnant (R) + energetic particles (P)
•  Target T and remnant R invisible
•  W/Z properties – you want to reconstruct these!

•  Define ‘shower’ energy/momentum via the W/Z 
properties

B+T− > R+P

W,Z

T

R

P

R: Lost information 

run through sim 

*random target orientation and ~no coupling to e.g. magnetic moment of target 
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Simulations

•  Events from gSeaGen (12000)
•  0-30 GeV range (Es=yEnu)
•  100 events per GeV (randomly selected)
•  4 classes: NC/CC and Muon/Electron neutrinos
•  Ignore leptons in CC events

•  Simulations
•  GEANT 3.21
•  Repeat 50 times for each of 12,000 events
•  Record photon statistics (number and direction)

•  Analysis
•  Fit fluctuations within and between events
•  Energy error: total number of photons
•  Direction error: mean photon direction
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Results: errors in energy resolution

•  Each point: mean of 50 runs for each vertex
•  Error bars: variation within these 50
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Total intrinsic variation: shower energy
•  Repeat for \nu_mu and CC/NC events

•  Fractional error in emitted photons ~ fractional 
error in energy reconstruction

•  1 GeV showers: ~50% energy resolution
•  10 GeV showers: ~20% energy resolution
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Results: direction (‘vertex’ variation    )

•  1 point per vertex (mean over 50 runs)
•  Plot offset of this mean from the z-axis

•  Fit: 34 degrees at 1 GeV, 3.4 degrees at 10 GeV
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Results: direction (cascade variation   )

•  Each point: variation of 50 runs about mean

•  1 GeV: ~20 degrees
•  10 GeV: ~6 degrees
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Total intrinsic variation:
•  Repeat for \nu_mu and CC/NC events

•  Fits statistically identical: no plans to repeat for anti-
neutrino events.

•  You will not be able to reconstruct showers better than 
this – even if you detect every single photon.
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DETECTOR LIMITATIONS

How are we limited by not detecting every photon? 



20m 

h=
6m

 

Detector Response

•  What is the mean photocathode density 
in the ocean?
•  Mean PMT effective area:
•  PMT density for contained events:
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Result: chance of detecting any given photon

•  Probability of:
•  any detection (energy reco):
•  direct detection (direction reco):

pdet λ( ) =
ldet λ( )
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Detector energy uncertainty

•  How many shower photons get detected?

•  Energy error >= Poisson error
•  Assumes 100% identification of shower hits, ignores 

detector clumpiness,…
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Results – shower energy reco

•  Comparison: intrinsic, ORCA, total

•  Conclude:
•  Energy reco: intrinsically limited
•  Perhaps a sparser detector would be best?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  5  10  15  20  25  30

fra
ct

io
na

l e
rro

r

Es = y Ei

intrinsic
detector

total

C.W.James, MANTS, Garching, Munich Oct 14th-15th 2013 24



Detector limits: direction

•  Shower direction: average direction of all direct photons
•  How well can we estimate the mean?
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Results – shower direction reco

•  Comparison: intrinsic, ORCA, total

•  Conclude:
•  Directional reco: detector effects significant
•  A denser detector would help
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What use is this?

•  Compare to current reconstruction efforts
•  How close is your method to ‘perfect’?

•  Use to influence detector design
•  Are we detector-limited or physics-limited?

•  Determine limits to mass hierarchy sensitivities
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Incorporation into sensitivity plots: 

•  Current situation: 
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Incorporation into sensitivity plots: 

•  Sketch of the future: 
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Summary of status

•  Physics is random – and this is important!
•  Affects energy and directional reconstruction
•  Effects estimated for muon tracks and showers

•  Best-case ORCA reference detector estimated
•  Event reconstruction will be limited by detected photon 

information

•  Next steps:
•  Do this for electromagnetic cascades (Nu_e CC)
•  Obtain fits for muon track events
•  Produce sensitivity estimates
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