Intrinsic variation in physics events for ORCA

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Clancy W. James, Jannik Hofestädt, ECAP MANTS, Garching, Oct 2013 Thanks also to M. Pleinart, T. Rauch

LIN TARES

KM3Ne¹

Friedrich-Alexander-Universität Erlangen-Nürnberg

Detectors see showers and tracks via photons

- Information via photons:
 - Number ~ energy
 - Direct photons ~ direction

- Physical mechanism:
 - Vertex physics
 - Particle propagation
 - Cherenkov emission
- What is the effect of intrinsic fluctuations in the physics?

Principles

- What is the best we can do if we detect every single photon?
 - Simulate many identical events
 - Look at fluctuations in photon output and track behaviour
- Given we detect only some photons, what's the best we can do?
 - Estimate mean detector response
 - What minimum error does this give us?
 - Always make optimistic assumptions on detector response

Muons: tracklength and deviation

• 10 Muon tracks, 3-13 GeV:

- They are not perfect straight lines (direction error)
- Length also differs (energy error)

Showers: vertex effects

• 2 events: same momentum transfer at the vertex

- Additional source of variation: ٠
 - Composition of the cascade
 - Energy/momentum of recoil nucleus •

Pi₀ **Nucleons** Pi⁺⁻ Gammas

Plot:

Principles

- Muons
 - Energy: estimate using true muon track length
 - Direction: use a linear fit to the track
- Showers:
 - Energy: estimate using total detected photons
 - Direction: mean photon direction *using direct photons only.*
- Assumptions: always make optimistic ones!
 - Know where photons come from
 - Perfect vertex reconstruction
 - Do not model detector effects

MUON TRACK FLUCTUATIONS

Muons: energy (method)

- Muon energy estimate it through the tracklength
- 'MUSIC': muon tracking in km3
 - output muon track information for many events •
- Run muons of a given energy, record tracklength

$$\Delta L = L - 4.25 \frac{E}{1 \text{ GeV}}$$

- Fit using gaussians: use
 - central peak (fit 1)
 - all data (fit 2)
 - Simple root mean square

8

8

Muons: energy (results)

• Intrinsic spread from physical fluctuations

• Approximately 8% muon energy resolution

Muons: direction (method)

- How straight are muon tracks?
 - Run 2000 muons over 0-20 GeV range with GEANT 3.21
 - Get x(z) and y(z) with simple linear fit
 - Obtain angular offset $\theta = \cos^{-1}(\hat{v}_{fit} \cdot \hat{z})$

C.W.James, MANTS, Garching, Munich Oct 14th-15th 2013

Muons: direction (results)

• Estimation of intrinsic variation:

- 10 GeV muons: ~4° intrinsic error
- Work still needed to characterise this (true dist 2D)

SHOWER FLUCTUATIONS

Showers: definitions

Outgoing particles: B + T - > R + P

- Boson (B) + target (T) -> remnant (R) + energetic particles (P)
- Target T and remnant R invisible
- W/Z properties you want to reconstruct these!

Define 'shower' energy/momentum via the W/Z properties

*random target orientation and ~no coupling to e.g. magnetic moment of target

Simulations

- Events from gSeaGen (12000)
 - 0-30 GeV range (E_s=yE_{nu})
 - 100 events per GeV (randomly selected)
 - 4 classes: NC/CC and Muon/Electron neutrinos
 - Ignore leptons in CC events
- Simulations
 - GEANT 3.21
 - Repeat 50 times for each of 12,000 events
 - Record photon statistics (number and direction)
- Analysis
 - Fit fluctuations within and between events
 - Energy error: total number of photons
 - Direction error: mean photon direction

Results: errors in energy resolution

- Each point: mean of 50 runs for each vertex
- Error bars: variation within these 50

Total intrinsic variation: shower energy

Repeat for \nu_mu and CC/NC events

- Fractional error in emitted photons ~ fractional error in energy reconstruction
 - 1 GeV showers: ~50% energy resolution
 - 10 GeV showers: ~20% energy resolution

Results: direction ('vertex' variation θ_{v})

- 1 point per vertex (mean over 50 runs)
- Plot offset of this mean from the z-axis

intrinsic variation in photon direction: var1

Mean direction over all 50 runs

Fit: 34 degrees at 1 GeV, 3.4 degrees at 10 GeV

Results: direction (cascade variation θ_c **)**

Each point: variation of 50 runs about mean

FOR ASTROPARTIC

Total intrinsic variation:

Repeat for \nu_mu and CC/NC events

$$\theta_{tot} = \sqrt{\theta_1^2 + \theta_2^2}$$

- Fits statistically identical: no plans to repeat for anti-٠ neutrino events.
- You will not be able to reconstruct showers better than this – even if you detect every single photon.

DETECTOR LIMITATIONS

How are we limited by not detecting every photon?

Detector Response

- What is the mean photocathode density in the ocean?
 - Mean PMT effective area: $\overline{A}_{PMT}(\lambda) = \frac{1}{4\pi} \int_{0}^{2\pi} A(\lambda,\theta) 2\pi \sin\theta \, d\theta$ PMT density for contained area.
 - PMT density for contained events:

Result: chance of detecting any given photon

- Probability of:
 - any detection (energy reco):
 - direct detection (direction reco):

Detector energy uncertainty

How many shower photons get detected?

 v_{o} CC: mean number of direct photons detected

- Energy error >= Poisson error
- Assumes 100% identification of shower hits, ignores detector clumpiness,...

Results – shower energy reco

• Comparison: intrinsic, ORCA, total

- Conclude:
 - Energy reco: intrinsically limited
 - Perhaps a sparser detector would be best?

Detector limits: direction

- Shower direction: average direction of all direct photons
- How well can we estimate the mean?

Results – shower direction reco

• Comparison: intrinsic, ORCA, total

- Conclude:
 - Directional reco: detector effects significant
 - A denser detector would help

What use is this?

- Compare to current reconstruction efforts
 - How close is your method to 'perfect'?
- Use to influence detector design
 - Are we detector-limited or physics-limited?
- Determine limits to mass hierarchy sensitivities

Incorporation into sensitivity plots:

• Current situation:

Incorporation into sensitivity plots:

• Sketch of the future:

Summary of status

- Physics is random and this is important!
 - Affects energy and directional reconstruction
 - Effects estimated for muon tracks and showers
- Best-case ORCA reference detector estimated
 - Event reconstruction will be limited by detected photon information
- Next steps:
 - Do this for electromagnetic cascades (Nu_e CC)
 - Obtain fits for muon track events
 - Produce sensitivity estimates

