Intrinsic variation in physics events for ORCA

Clancy W. James, Jannik Hofestädt, ECAP MANTS, Garching, Oct 2013
Thanks also to M. Pleinart, T. Rauch

Detectors see showers and tracks via photons

- Information via photons:
- Number ~ energy
- Direct photons ~ direction

- Physical mechanism:
- Vertex physics
- Particle propagation
- Cherenkov emission
- What is the effect of intrinsic fluctuations in the physics?

Principles

- What is the best we can do if we detect every single photon?
- Simulate many identical events
- Look at fluctuations in photon output and track behaviour
- Given we detect only some photons, what's the best we can do?
- Estimate mean detector response
- What minimum error does this give us?
- Always make optimistic assumptions on detector response

Muons: tracklength and deviation

- 10 Muon tracks, 3-13 GeV:

- They are not perfect straight lines (direction error)
- Length also differs (energy error)

Showers: vertex effects

- 2 events: same momentum transfer at the vertex

Plot:

Pi0

- Additional source of variation:
- Composition of the cascade
- Energy/momentum of recoil nucleus

Principles

- Muons
- Energy: estimate using true muon track length
- Direction: use a linear fit to the track
- Showers:
- Energy: estimate using total detected photons
- Direction: mean photon direction - using direct photons only.
- Assumptions: always make optimistic ones!
- Know where photons come from
- Perfect vertex reconstruction
- Do not model detector effects

MUON TRACK FLUCTUATIONS

Muons: energy (method)

- Muon energy - estimate it through the tracklength $\frac{\Delta L}{L} \Leftrightarrow \frac{\Delta E}{E}$
- 'MUSIC': muon tracking in km3
- output muon track information for many events
- Run muons of a given energy, record tracklength

$$
\Delta L=L-4.25 \frac{E}{1 \mathrm{GeV}}
$$

- Fit using gaussians: use
- central peak (fit 1)
- all data (fit 2)
- Simple root mean square

Courtesy J. Hofestädt

Muons: energy (results)

- Intrinsic spread from physical fluctuations

Courtesy J. Hofestädt

- Approximately 8\% muon energy resolution

Muons: direction (method)

- How straight are muon tracks?
- Run 2000 muons over 0-20 GeV range with GEANT 3.21
- Get $x(z)$ and $y(z)$ with simple linear fit
- Obtain angular offset $\quad \theta=\cos ^{-1}\left(\hat{v}_{f t} \cdot \hat{z}\right)$

Muons: direction (results)

- Estimation of intrinsic variation:
mean angular offset from z-axis (original direction)

Courtesy
M. Pleinert

- 10 GeV muons: $\sim 4^{\circ}$ intrinsic error
- Work still needed to characterise this (true dist 2D)

SHOWER FLUCTUATIONS

Showers: definitions

- Outgoing particles: $B+T->R+P$
- Boson $(B)+$ target (T)-> remnant $(R)+$ energetic particles (P)
- Target T and remnant R invisible
$W, Z\left(E_{S}, \theta_{S}\right) \cdot \mathrm{W} / Z$ properties - you want to reconstruct these!

- Define 'shower' energy/momentum via the W/Z properties
*random target orientation and \sim no coupling to e.g. magnetic moment of target

Simulations

- Events from gSeaGen (12000)
- $0-30 \mathrm{GeV}$ range ($\mathrm{E}_{\mathrm{s}}=\mathrm{y} \mathrm{E}_{\mathrm{nu}}$)
- 100 events per GeV (randomly selected)
- 4 classes: NC/CC and Muon/Electron neutrinos
- Ignore leptons in CC events
- Simulations
- GEANT 3.21
- Repeat 50 times for each of 12,000 events
- Record photon statistics (number and direction)
- Analysis
- Fit fluctuations within and between events
- Energy error: total number of photons
- Direction error: mean photon direction

Results: errors in energy resolution

- Each point: mean of 50 runs for each vertex
- Error bars: variation within these 50

Outliers: cause unknown

Total intrinsic variation: shower energy

- Repeat for \nu_mu and CC/NC events

Difference NOT significant

- Fractional error in emitted photons ~ fractional error in energy reconstruction
- 1 GeV showers: ~50\% energy resolution
- 10 GeV showers: ~20\% energy resolution

Results: direction ('vertex' variation θ_{v})

- 1 point per vertex (mean over 50 runs)
- Plot offset of this mean from the z-axis

- Fit: 34 degrees at 1 GeV , 3.4 degrees at 10 GeV

Results: direction (cascade variation θ_{c})

- Each point: variation of 50 runs about mean

- $1 \mathrm{GeV}: \sim 20$ degrees
- $10 \mathrm{GeV}: \sim 6$ degrees

Total intrinsic variation:

- Repeat for \nu_mu and CC/NC events

Add errors in quadrature:

$$
\theta_{t o t}=\sqrt{\theta_{1}^{2}+\theta_{2}^{2}}
$$

- Fits statistically identical: no plans to repeat for antineutrino events.
- You will not be able to reconstruct showers better than this - even if you detect every single photon.

DETECTOR LIMITATIONS

How are we limited by not detecting every photon?

Detector Response

- What is the mean photocathode density in the ocean?
- Mean PMT effective area: $\bar{A}_{P M T}(\lambda)=\frac{1}{4 \pi} \int_{0}^{2 \pi} A(\lambda, \theta) 2 \pi \sin \theta \mathrm{~d} \theta$
- PMT density for contained events:

Vertical spacing $\mathrm{h}=6 \mathrm{~m}$ Horizontal area A=346 m²
1 OM per $2076 \mathrm{~m}^{3}$
$\rho_{p m t}(\lambda)=0.015$
$l_{\text {det }}(\lambda)=1 / A_{p m t}(\lambda) \rho_{p m t}$

Result: chance of detecting any given photon

- Probability of:
- any detection (energy reco):
- direct detection (direction reco):

$$
\begin{aligned}
& p_{\mathrm{det}}(\lambda)=\frac{l_{\mathrm{det}}(\lambda)}{l_{a b s}(\lambda)} \\
& p_{\text {dir }}(\lambda)=\frac{l_{\mathrm{det}}(\lambda)}{l_{a t t}(\lambda)}
\end{aligned}
$$

Expect half photons to be detected unscattered

Detector energy uncertainty

- How many shower photons get detected?

- Energy error $>=$ Poisson error $\frac{\Delta E_{\text {det }}}{E} \sim N^{-0.5}$
- Assumes 100% identification of shower hits, ignores detector clumpiness,...

Results - shower energy reco

- Comparison: intrinsic, ORCA, total

- Conclude:
- Energy reco: intrinsically limited
- Perhaps a sparser detector would be best?

Detector limits: direction

$$
\sigma_{s}=\sigma_{\gamma} / \sqrt{N_{d i r}}
$$

- Shower direction: average direction of all direct photons
- How well can we estimate the mean?

Mean photon direction over all 50 runs Mean photon direction for a single run
Mean offset of each photon from the mean shower direction

Results - shower direction reco

- Comparison: intrinsic, ORCA, total

- Conclude:
- Directional reco: detector effects significant
- A denser detector would help

What use is this?

- Compare to current reconstruction efforts
- How close is your method to 'perfect'?
- Use to influence detector design
- Are we detector-limited or physics-limited?
- Determine limits to mass hierarchy sensitivities

Incorporation into sensitivity plots:

- Current situation:

Incorporation into sensitivity plots:

- Sketch of the future:

Summary of status

- Physics is random - and this is important!
- Affects energy and directional reconstruction
- Effects estimated for muon tracks and showers
- Best-case ORCA reference detector estimated
- Event reconstruction will be limited by detected photon information
- Next steps:
- Do this for electromagnetic cascades (Nu_e CC)
- Obtain fits for muon track events
- Produce sensitivity estimates

