Atmospheric muons rejection for ORCA

L.A. Fusco

University of Bologna & INFN – Sezione di Bologna

MANTS 2013 Garching, Oct. 14th-15th 2013

Outline

- Monte Carlo simulation
- Event reconstruction
- Muon background studies

Production chain

Muon generation: MUPAGE v3r5 – muon bundles at the can

- $-1 \le E_{\mu} \le 10^5 \text{ GeV}$
- $0^{\circ} < \theta < 85^{\circ}$
- Multiplicity < 200

Reference detector:

- 50 strings, 20 m spacing;
- 20 OMs per string, 6 m spacing;
- 31 3" PMT per OM.

Production chain

Muon generation: **MUPAGE v3r5** – muon bundles at the can

- $-1 \le E_{\mu} \le 10^5 \text{ GeV}$
- $0^{\circ} < \theta < 85^{\circ}$
- Multiplicity < 200

Muon propagation and light production: **km3 v4r4**

Optical background: modk40

Reconstruction: recoLNSIowE20 (dedicated talk tomorrow)

Reference detector:

- 50 strings, 20 m spacing;
- 20 OMs per string, 6 m spacing;
- 31 3" PMT per OM.

Muon background rejection

reco* output: reconstructed direction, energy estimation with track length, track starting point.

- Quality parameter Λ and angular error estimate β .
- Look at <u>upward going</u> reconstructed tracks.

* Dedicated talk tomorrow by A.Trovato (Low Energy session)

Muon background rejection

reco* output: reconstructed direction, energy estimation with track length, track starting point.

- Quality parameter Λ and angular error estimate β .
- Look at upward going reconstructed tracks.

Possibility to reject wrongly reconstructed atmospheric muons with Λ and $\beta.$

- Hard cuts required on these variables to obtain a safe rejection;
- Loss of low energy neutrinos.

Adding the starting point information improves the rejection performances.

Track starting point (upgoing - $\beta < 2^{\circ}$, $\Lambda > -4.8$)

Track starting point (upgoing - $\beta < 2^{\circ}$, $\Lambda > -4.2$)

Track starting point (upgoing - $\beta < 2^{\circ}$, $\Lambda > -4.8$)

Track starting point (upgoing - $\beta < 2^{\circ}$, $\Lambda > -4.2$)

A combination of Λ , β and R_{ν} is effective in the rejection of upgoing reconstructed atmospheric muons

Cμ 10% Λ > -4.8

A combination of Λ , β and R_{ν} is effective in the rejection of upgoing reconstructed atmospheric muons

Cμ 10% Λ > -4.5

A combination of Λ , β and R_{ν} is effective in the rejection of upgoing reconstructed atmospheric muons

Cµ 10% ∧ > -4.2

β < 2°

R _ν < 70 m	Сμ	∧ cut	#v/yr	#v _L /yr	#µ/yr
	10%	-4.8	~ 10 k	~4.2 k	~ 1 k
	1%	-4.2	~ 9 k	~4.1 k	~ 90

R _v < 75 m	Cµ	∧ cut	#v/yr	#ν _L /yr	#µ/yr
	10%	-4.5	~ 10 k	~4.8 k	~ 1 k
	1%	-4.0	~ 9 k	~4.4 k	~ 90

 $R_{v} < 80 m$

Сμ	∧ cut	#v/yr	#ν _L /yr	#µ/yr
10%	-4.2	~ 11 k	~ 4.5 k	~ 1 k
1%	-3.7	~ 9 k	~4.2 k	~ 90

Upgoing reconstructed tracks

Track starting point (upgoing $-\beta < 2^{\circ}, \Lambda > -4.8$)

70 m radius

Track starting point (upgoing $-\beta < 2^{\circ}, \Lambda > -4.8$)

70 m radius

Track starting point (upgoing $-\beta < 2^{\circ}, \Lambda > -4.5$)

75 m radius

Track starting point (upgoing $-\beta < 2^{\circ}, \Lambda > -4.5$)

75 m radius

Track starting point (upgoing $-\beta < 2^{\circ}, \Lambda > -4.2$)

80 m radius

Track starting point (upgoing $-\beta < 2^{\circ}, \Lambda > -4.2$)

80 m radius

Conclusions

• Hard track quality parameter cuts allow muon rejection – significant loss of low energy neutrinos.

Track starting point requirement

- Loose β cut and quite loose Λ cut region accessible for a few percent muon contamination.
- 3 possible combinations of R_{ν} , Λ and β give similar results.
- Atmospheric muon rejection is feasible with ORCA.