KM3NeT

KM3NeT and diffuse flux: preliminary results

R. Coniglione – INFN Laboratori Nazionali del Sud

KM3NeT physics goal

The main physics goal of the KM3NeT detector is "neutrino astronomy".

- Very large field of view mainly in the southern sky
- Large visibility of the Galactic plane and Galactic center
- Good angular resolution for v_u events

Detector geometry optimized for detection of neutrinos from Galactic sources

- TDR detector optimized for E⁻² spectrum (180 m distance between DUs). Detector volume about 6 km³
- New reference detector optimized for Galactic sources with spectrum with a cutoff in the TeV region (90 m distance between DUs). Detector volume of about 3 km³

Detector optimization for RXJ1713

Detector resolution

Best DU distance around 90-100m

 $= \operatorname{median} \Delta \Omega(v_{\text{gen}},\mu_{\text{gen}})$ $= \operatorname{all reconstructed events}$ $= \operatorname{reconstructed events selected with a quality cut}$ $= \operatorname{reconstructed} = \operatorname{vents} = \operatorname{selected} = \operatorname{with} = \operatorname{quality} \operatorname{cut}$ $= \operatorname{reconstructed} = \operatorname{vents} = \operatorname{selected} = \operatorname{with} = \operatorname{quality} \operatorname{cut}$ $= \operatorname{reconstructed} = \operatorname{vents} = \operatorname{selected} = \operatorname{with} = \operatorname{quality} \operatorname{cut}$ $= \operatorname{reconstructed} = \operatorname{vents} = \operatorname{selected} = \operatorname{with} = \operatorname{quality} \operatorname{cut}$ $= \operatorname{reconstructed} = \operatorname{vents} = \operatorname{selected} = \operatorname{with} = \operatorname{quality} \operatorname{cut}$ $= \operatorname{reconstructed} = \operatorname{vents} = \operatorname{selected} = \operatorname{with} = \operatorname{quality} \operatorname{cut}$ $= \operatorname{reconstructed} = \operatorname{vents} = \operatorname{selected} = \operatorname{with} = \operatorname{quality} \operatorname{cut}$ $= \operatorname{reconstructed} = \operatorname{vents} = \operatorname{selected} = \operatorname{vents} = \operatorname{selected} = \operatorname{vents} = \operatorname{selected} = \operatorname{vents} = \operatorname{selected} = \operatorname{selected} = \operatorname{vents} = \operatorname{selected} = \operatorname{sel$

Resolution below 3 TeV limited only by intrinsic $\theta_{\nu-\mu}$ angle

Neutrino astronomy enforced by the discovery of IceCube high energy events. Where do they come from?

Better resolution expected in KM3NeT detector for cascade events. v_{μ} the best probe for neutrino astronomy

The discovered flux

 IceCube discovered a flux of high energy neutrinos (from ~ 10 TeV to few PeV)

contained events analysis - full sky

 $\nu_e + \nu_\mu + \nu_\tau$

IceCube detector	Detector Size (km³)	Obs. Time (year)	$\Phi_{ m observed}$ (GeV ⁻¹ s ⁻¹ sr ⁻¹ cm ⁻²)	Cutoff energy	σ
IC79+86	≈1	1.8	3.6 10 ⁻⁸	≈2 PeV ?	4.1

 $v_{e}: v_{\mu}: v_{\tau} = 1:1:1 \rightarrow \Phi_{v\mu} \approx 1.2 \ 10^{-8} \, \text{GeV}^{-1} \, \text{sr}^{-1} \, \text{cm}^{-2} \, \text{s}^{-1}$

Is this flux visible with the "traditional" diffuse flux analysis (up-going tracks)?

Warning !!!! KM3NeT not optimized for this flux

The simulations chain

ANTARES code modified for KM3NeT

- Neutrino generator → GENHEN
- Atmospheric muons generator → MUPAGE
- Light & hits \rightarrow KM₃
- Reconstruction code → hit selection + reconstruction based on PDF

The simulated detector

Footprint of a detector block of 115 DU

Each block:

- 115 detection Units
- ≈ 90 m distance between strings
- 18 floors per DU
- 1 DOM with 31 3" PMTs per floor (12 PMTs up-looking and 19 downlooking
- 36 m distance between floors

•Volume of a single block ≈ 0.5 km³
• Full detector of 6 blocks (≈ 3 km³)

Detection Unit

The event production

- CC interaction of v_{μ} and anti- v_{μ} in the energy range 10² – 10⁸ GeV and θ_{zenith} 0°-180° (full sky)
- Atmospheric neutrino background
 Conventional Bartol flux
- Two samples of μ_{atm}
 - ITeV > 1.4 10⁷ events > live time 1.0 day
 - ► >10 TeV → 7.5 10⁶ events → live time 25.6 days

μ_{atm} at generation level and at reconstruction level

Diffuse flux: up-going events

Sensitivity and Discovery fluxes estimated minimizing MRF and MDP with cuts on Λ (reconstruction quality parameter) and N_{hit} (number of hit \rightarrow muon energy estimator)

Up-going tracks – NO cut applied

Lambda distributions

Cumulative distribution

Diffuse flux: up-going events

Sensitivity and Discovery fluxes estimated minimizing MRF and MDP with cuts on Λ (reconstruction quality parameter) and N_{hit} (number of hit \rightarrow muon energy estimator)

Up-going tracks – NO cut applied

N_{hit} distributions

Cumulative distribution

Preliminary results

Sensitivity (90% C.L.) and discovery flux (5 σ 50% prob.) for one year of full KM3NeT detector (6 blocks)

Spectrum	Λ	N_{hit}	Φ_{sens}	Φ_{disc}	v_{atm}	$ m \star v_{diff}$	μ_{atm}
E ⁻²	-4.5	498	4.4 10 ⁻⁹	1.3 10 ⁻⁸	35.1	11.5	0
E ⁻² exp(-E/2PeV)	-4.5	489	7.0 10 ⁻⁹	2.1 10 ⁻⁸	36.2	11.7	0

Flux in GeV⁻¹ sr⁻¹ cm⁻² s⁻¹

* the number of ν_{diff} is normalized to the sensitivity flux

NO prompt component considered in the $\nu_{\mbox{\tiny atm}}$ spectrum

Energy spectra

Minimization cut applied

E⁻² exp(-E/2PeV) spectrum

Energy range ≈40 TeV-10 PeV

E⁻² spectrum

Discovery flux

Discovery flux at 5 σ 50% probability for the full KM3NeT detector

- E⁻² spectrum
 discovery in about
 years
- E⁻² with cutoff@2 PeV
 → discovery in about
 2.5 years

IceCube discovered flux + 20% of indetermination

Sensitivity flux

Sensitivity flux at 90% C.L. for the full KM3NeT detector

Slide from Waever TAUP2013 – ν_{μ} diffuse flux search with the full IceCube detector - analysis on up-going tracks - Data not yet unblinded

sensitivity

v_{atm} flux

Dependence on the v_{atm} flux to be explored

For energies $>10^{5.5}$ GeV the prompt component is dominant.

First preliminary test with the RQPM prompt component \rightarrow difference of about a factor 2

Summary

- First preliminary results show that KM3NeT will discover a 1.2 10⁻⁸ E⁻² diffuse flux in about 1 year and a 1.2 10⁻⁸ E⁻² flux with a cutoff at 2 PeV in about 2.5 years
- Results depend on the assumed v_{atm} flux model Caution in the comparisons between different experiments

The next

- Studies of the dependence on the v_{atm} spectrum assumed
- Energy reconstruction algorithms to be implemented and tested
- Try to explore few degrees above the horizon -> good μ_{atm} statistics needed

A lot of work to do...

Cascade reconstruction

Full sky search

- Remove down-going μ to remove v_{atm} and μ_{atm} backgrounds v_{atm} suppression vetoing the accompaning muons (schonert et al. PRD79 (2009))
 - ✓ at E_v = 10Te V 70% of v_{atm} accompanied by a muon but only at vertical angles θ_{zenith}>45 → Corsika simulations needed
 - At E_v > 30-100 Te V all accompanied by a muon -> Corsika simulations needed

Veto strategies

- Exploiting the DOM up-looking behaviour
- External strings and upper floors
- Pseudo-vertex (Luigi Fusco talk)...

R. Coniglione KM3NeT coll. meeting - Wuerzburg 9-12 October 2013