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Field line random walk

Pressure-balanced structures in MHD
Pressure-balanced structures, observed frequently in the solar wind [e.g.,
Burlaga, 1995], are equilibrium solutions to the ideal MHD equations.
Provided U · ∇U = 0, they satisfy

∇P =
1
c J× B = 0,

from which B · ∇B = 0 we obtain the condition for pressure balance

P +
B2

8π = const.

This implies that B · ∇P = 0 and J · ∇P = 0 and therefore both B and J
lie along surfaces of constant total pressure. Thus the flux tube defined by
the pressure-balanced structure represents a smooth surface that is
everywhere tangent to the local magnetic field B. By following the
evolution of the pressure-balanced structure in space, we can therefore
very conveniently examine magnetic field line wandering.
Such structures emerge from a dynamical theory of nearly incompressible
MHD Zank and Matthaeus [1992].
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Field line random walk - cont.

Pressure-balanced structures in MHD - cont.
Consider axisymmetric magnetic fluctuations b transverse to a uniform
mean field B0 = B0ẑ so that

B = B0 + b(x , y , z); b · B0 = 0,

meaning that b can be slab, 2d, or a superposition.
Magnetic surfaces must therefore satisfy

∂P
∂z +

b
B0
· ∇⊥P = 0.

Adopting a simple slab turbulence or propagating linear waves form for the
coefficient b/B0 will not engender any complexity in the field surfaces
described by the scalar P. By contrast, the inclusion of a 2-D field for b/B0
can lead to an extraordinarily complicated magnetic field flux surfaces.
Such surfaces, as expressed through the passive scalar equation will evolve
in complexity with spatial displacement just as a passive scalar undergoes
turbulent mixing with time when advocated in a turbulent 2-D flow field.
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NLGC

Back to diffusion coefficients
Velocity of the guiding center. The first assumption is that the
perpendicular transport is governed by the velocity of gyrocenters that
follow field lines. In this case the equation of motion is given by:

vx (t) = avz
δBx

B0
.

The parameter a is a proportionality constant and has to be determined
after the fact through comparison with simulations.
TGK formalism. The TGK formalism is given by

κxx =

∫ ∞
0

dt 〈 vx (t)vx (0) 〉 .

By substituting the gyro center velocity into the equation we obtain

κxx =
a2

B2
0

∫ ∞
0

dt 〈 vz (t) δBx (t) vz (0) δB∗x (0) 〉 .
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NLGC

Back to diffusion coefficients
Fourth order correlation functions. Matthaeus, Bieber, Qin, Zank (2003)
note:

Next, we assume that the particle velocities are uncorrelated
with the local magnetic field vector. This is exact for any
distribution symmetric about 90o pitch angle. Thus, the more
daunting fourth-order correlation is replaced by a product of
second-order correlations,

κxx =
a2

B2
0

∫ ∞
0

dt 〈 vz (t) vz (0) 〉 〈 δBx (t) δB∗x (0) 〉 .
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NLGC

Back to diffusion coefficients
Velocity correlation function. We replace the velocity correlation function
by

〈 vz (t) vz (0) 〉 =
v 2

3 e
− vt

λ‖ .

This assumption is consistent with the TGK formulation of the parallel
diffusion coefficient

κzz =
v
3λ‖ =

∫ ∞
0

dt 〈 vz (t) vz (0) 〉 ,

where we used the relation between the parallel mean free path and parallel
diffusion coefficient , where κzz = κ‖. The velocity correlation decorrelates
exponentially with a characteristic decorrelation time τ = λ‖/v , which is
connected to the parallel mean free path. For short times (vt � λ‖) we
find for the velocity correlation function 〈 vz (t) vz (0) 〉 = v 2/3, i.e.,
isotropic initial conditions. (see generalization by Webb, Zank, 2005).
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NLGC

Back to diffusion coefficients
Correlation function of the turbulent magnetic fields. For the correlation
function of the turbulent magnetic fields we use

〈 δBx (t) δB∗x (0) 〉 =

∫
d3k Pxx (k) Γ(k, t)

〈
e ik·r 〉 ,

where Pxx (k) is the magnetostatic correlation tensor, Γ(k, t) the
dynamical correlation function, and

〈
e ik·r 〉 the characteristic function.

The magnetostatic correlation tensor depends on the geometry (slab, 2D).
Dynamical correlation function. The magnetic fields decorrelate
exponentially with time, so that

Γ(k, t) = e−γ(k)t ,

where γ is the inverse of a wavenumber dependent characteristic time
scale.
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NLGC

Back to diffusion coefficients
Characteristic function. Matthaeus et al (2003) write:

We assume that the components of the trajectory have
uncorrelated axisymmetric Gaussian distributions and,
furthermore, that the distribution of displacements is diffusive for
all values of time.

This leads to 〈
e ik·r 〉 = e−κxx k2

xx t−κyy k2
yy t−κz k2

zz t .

The diffusion coefficient is then given by

κxx =
a2v 2

3B2
0

∫
d3k Pxx (k)

∫ ∞
0

dt e
− vt

λ‖
−γ(k)t−κxx k2

xx t−κyy k2
yy t−κz k2

zz t
.

After an elementary time integration we obtain

κxx =
a2v 2

3B2
0

∫
d3k Pxx (k)

v
λ‖

+ γ(k) + κxxk2
xx + κyyk2

yy + κzk2
zz
.

This is a nonlinear integral equation and is referred to as the NLGC theory.
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Turbulence Properties: Energy Spectrum

Energy Range
small wave numbers → large scales
Turbulence gains energy
E ∼ k−1

Inertial Range
medium wave numbers → medium scales
Energy is transferred from large to small scales
Kolmogorov theory of turbulence
E ∼ k−5/3

Dissipation Range
high wave numbers → small scales
Turbulence loses energy through dissipation
E ∼ k−3
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Turbulence Properties: Geometry

Isotropic turbulence
δB = δB(r)

Slab turbulence

δBslab = δBslab(z) (change parallel to B0)
δBslab

z (z) = 0 (solenoidal constraint)
k ‖ B0 (Fourier transformation)

2D turbulence

δB2D = δB2D(x , y) (change perpendicular to B0)
in general δB2D(x , y) 6= 0
δB2D(x , y) = 0 (full 2D model, k ⊥ B0)
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Turbulence Properties: Geometry

Turbulence Geometry form Measurements

Maltese cross
approximated by
superposition:
15 - 20 % slab
80 - 85 % 2D
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NLGC models

Slab plus 2D
Turbulence in the solar wind is thought to comprise a superimposed slab
and 2-D component; this based on theory [Zank and Matthaeus, 1992]
and observations [Matthaeus et al., 1990; Bieber et al., 1996]. The
two-component slab 2-D model ignores the usually smaller parallel
variance and includes only fluctuations with wave vectors either purely
parallel (kz) to or perpendicular (k⊥) to the mean magnetic field B0. Thus
we may express

Sxx (k) = S2D
xx (k⊥)δ(kz ) + Sslab

xx (kz )δ(k⊥)

where

Sslab
xx (kz ) = C

〈
b2

slab
〉
λslab

(
1 + k2

z λ
2
slab
)−ν

;

S2D
xx (k⊥) =

C
π

〈
b2

2D
〉
λ2D

(
1 + k2

z λ
2
slab
)−ν

k⊥
.

We assume that the spectrum has an inertial range that is characteristic of
fully developed Kolmogorov turbulence and thus ν = 5/6.
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NLGC models

Slab plus 2D
Zank et al., 2004 and Shalchi et al., 2004 develop attractive approximate
solution to the integral equation.
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NLGC models

Slab plus 2D
Numerical simulations compared to NLGC theory:
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Magnetic correlation tensor

Fourier Transformation
The perturbed equations of motion depend on the turbulent magnetic fields
δB(r , t) and the components of the correlation tensor are

Rlm(r 1, t1, r2, t2) = 〈 δBl (r 1, t1) δBm(r 2, t2) 〉 ,

with l ,m = x , y , z. The position vectors are given by r 1 and r 2 and the time by
t1 and t2. Usually the turbulent magnetic fields are represented by a Fourier
transformation,

δBl (r , t) =

∫
d3k δBl (k, t)e ik·r ,

where k is a wave vector. The correlation tensor becomes

Rlm(r 1, t1, r 2, t2)

=

〈∫
d3k1 δBl (k1, t1)e ik1·r1

∫
d3k2 δBm(k2, t)e ik2·r2

〉
=

∫
d3k1

∫
d3k2

〈
δBl (k1, t1) δBm(k2, t2) e i(k1·r1+k2·r2)

〉
.
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Magnetic correlation tensor

Corrsin’s (independence) hypothesis - a random phase approximation
Corrsin’s hypothesis states that〈

δBl (k1, t1) δBm(k2, t2) e i(k1·r1+k2·r2)
〉

≈ 〈 δBl (k1, t1) δBm(k2, t2) 〉
〈
e i(k1·r1+k2·r2)

〉
.

Corrsin’s (independence) hypothesis can be formulated in different ways:
Corrsin suggested that at long diffusion times the probability distribution
of particle displacements and the probability distribution of the Eulerian
velocity field would become statistically independent of each other. At
large values of the diffusion time, the independence hypothesis asserts that
the joint average can be expressed as the product of two separate averages.
The statistics of the magnetic fluctuations can be separated from those of
the individual trajectories, Matthaeus et al 1995.

Using Corrsin’s independent hypothesis we obtain

Rlm(r 1, t1, r 2, t2)

=

∫
d3k1

∫
d3k2 〈 δBl (k1, t1) δBm(k2, t2) 〉

〈
e i(k1·r1+k2·r2)

〉
.
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Magnetic correlation tensor

Homogeneity in space
Tautz and Lerche (2011) write:

In a homogeneous (but not necessarily isotropic) medium both the
left-hand and the right-hand sides of the last equation must depend
on |r 1 − r 2| only, hence a factor δ(k1 + k2) is invoked.

This means we have to multiply with δ(k1 + k2). The integration with respect
to wave vector k2 can easily be solved (the integration contributes only for
k2 = −k1) and we obtain

Rlm(r 1, t1, r 2, t2) =

∫
d3k1 〈 δBl (k1, t1)δBm(−k1, t2) 〉

〈
e i(k1·r1−k1·r2)

〉
.

From the definition of the Fourier transform of the magnetic fluctuation (or
better, the definition of the back transformation), it is clear that
δBm(−k1, t2) = δB∗m(k1, t2), where the asterisk (∗) denotes a complex
conjugate quantity. We obtain

Rlm(r 1, t1, r 2, t2) =

∫
d3k1 〈 δBl (k1, t1) δB∗m(k1, t2) 〉

〈
e ik1·(r1−r2)

〉
.
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Magnetic correlation tensor

Homogeneity in space

By defining P̃lm(k1, t1, t2) = 〈 δBl (k1, t1) δB∗m(k1, t2) 〉 as the magnetic
correlation tensor in wave vector space, we obtain

Rlm(r 1, t1, r 2, t2) =

∫
d3k1 P̃lm(k1, t1, t2)

〈
e ik1·(r1−r2)

〉
.

Homogeneity in time
Under the assumption that the turbulence is also homogeneous in time, i.e.,
only the time difference |t1 − t2| is important, we may set t2 = 0 und
r 2(t2 = 0) = 0 and obtain

Rlm(r 1, t1) =

∫
d3k1 P̃lm(k1, t1)

〈
e ik1·r1

〉
.

Assuming that all components of the correlation tensor possess the same
temporal behavior, we may define

P̃lm(k1, t1) = Plm(k1) Γ(k1, t1)

so that

Rlm(r 1, t1) =

∫
d3k1 Plm(k1) Γ(k1, t1)

〈
e ik1·r1

〉
.

Here, Plm(k1) denotes the components of the magnetostatic correlation tensor,
Γ(k1, t1) the dynamical correlation function and

〈
e ik1·r1

〉
the so called

characteristic function. As an example, for magnetostatic turbulence, the
dynamical correlation function is Γ(k1, t1) = 1.
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Homogeneity in time
Assuming that all components of the correlation tensor possess the same
temporal behavior, we may define

P̃lm(k1, t1) = Plm(k1) Γ(k1, t1)

so that

Rlm(r 1, t1) =

∫
d3k1 Plm(k1) Γ(k1, t1)

〈
e ik1·r1

〉
.

Here, Plm(k1) denotes the components of the magnetostatic correlation tensor,
Γ(k1, t1) the dynamical correlation function and

〈
e ik1·r1

〉
the so called

characteristic function. As an example, for magnetostatic turbulence, the
dynamical correlation function is Γ(k1, t1) = 1.



Some preliminaries NLGC Theory Magnetic correlation tensor Higher order correlation functions General Results for QLT and NLGC

Equations of motion

gyrocenters of charged particles follow magnetic field lines.

ṽx (t) =vz (t)
δBx (t)

B0
ṽy (t) =vz (t)

δBy (t)

B0

Newton-Lorentz equation

vx (ξ) =v⊥ cos(φ0 − Ωξ)

+
Ω

B0

∫ ξ

0
dt vz (t)δBx (t) sin [Ω(ξ − t)]

− Ω

B0

∫ ξ

0
dt vz (t)δBy (t) cos [Ω(ξ − t)]

vy (ξ) =v⊥ sin(φ0 − Ωξ)

+
Ω

B0

∫ ξ

0
dt vz (t)δBx (t) cos [Ω(ξ − t)]

+
Ω

B0

∫ ξ

0
dt vz (t)δBy (t) sin [Ω(ξ − t)]
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Higher order correlation functions

4th order correlation function
general expression

Cij (t1, t2) = 〈 vz (t1)δBi (t1)vz (t2)δBj (t2) 〉

assumption that the particle velocities are uncorrelated with the local
magnetic field vector

Cij (t1, t2) ≈ 〈 vz (t1)vz (t2) 〉 〈 δBi (t1)δBj (t2) 〉

Fourier transformation of turbulent fields

Cij (t1, t2) = 〈 vz (t1)vz (t2) 〉
∫

d3k Pij (~k)
〈
e i~k·[~r(t1)−~r(t2)]

〉
where Pij (~k) =< δBi (~k)δB∗j (~k) > magnetostatic correlation tensor
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Higher order correlation functions

Transport Theories - a selection
Quasilinear Theory

CQLT
ij (t1, t2) = v 2µ2

∫
d3k Ps

ij (k‖) cos
[
k‖vµ(t1 − t2)

]

nonlinear guiding center theory with α(~k) = γ(~k) + v/λ‖ +
∑

n,m κnmknkm

CNL
ij (t1, t2) =

v 2

3

∫
d3k Pij (~k)e−α(~k)|t1−t2|

distinguish between particle and field properties

CFT
ij (t1, t2) =

v 2

3

∫
d3k Pij (~k)

[
ω+

ω+ − ω−
e(ω+−ρ)τ − ω−

ω+ − ω−
e(ω−−ρ)τ

]
with τ = |t1 − t2|, ω± = −D ±

√
D2 − (vk‖)2/3, D is a constant and

ρ =
∑

i,j=x,y kikjκij .
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Higher order correlation functions

Guiding center motion
Field Line Random Walk Limit

λ⊥ = λFLRW
⊥

Z

X

Newton-Lorentz equation
Contribution for higher energies

λ⊥ = λFLRW
⊥ + ∆λ⊥(R)

Z

X
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Higher order correlation functions

QLT

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

R

λ
⊥
/λ

F
L
R
W

⊥

 

 

λFLRW
⊥

∆λ⊥
λ⊥

NLGC - theory


	Some preliminaries
	NLGC Theory
	Magnetic correlation tensor
	Higher order correlation functions
	General Results for QLT and NLGC

