TELESCOPE ARRAY: RECENT RESULTS, FUTURE PLANS

Douglas Bergman University of Utah Cosmic Ray Anisotropy Workshop 26 September 2013

TA Experiment

T Abu-Zayyad¹, R Aida², M Allen¹, R Azuma³, E Barcikowski¹, JW Belz¹, T Benno⁴, DR Bergman¹, SA Blake¹, O Brusova¹, R Cady¹, BG Cheon⁶, J Chiba⁷, M Chikawa⁴, EJ Cho⁶, LS Cho⁸, WR Cho⁸, F Cohen⁹, K Doura⁴, C Ebeling¹, H Fujii¹⁰, T Fujii¹¹, T Fukuda³, M Fukushima^{9,22}, D Gorbunov¹², W Hanlon¹, K Hayashi³, Y Hayashi¹¹, N Hayashida⁹, K Hibino¹³, K Hiyama⁹, K Honda², G Hughes⁵, T Iguchi³, D Ikeda⁹, K Ikuta², SJJ Innemee⁵, N Inoue¹⁴, T Ishii², R Ishimori³, D Ivanov⁵, S Iwamoto², CCH Jui¹, K Kadota¹⁵, F Kakimoto³, O Kalashev¹², T Kanbe², H Kang¹⁶, K Kasahara¹⁷, H Kawai¹⁸, S Kawakami¹¹, S Kawana¹⁴, E Kido⁹, BG Kim¹⁹, HB Kim⁶, JH Kim⁶, JH Kim²⁰, A Kitsugi⁹, K Kobayashi⁷, H Koers²¹, Y Kondo⁹, V Kuzmin¹², YJ Kwon⁸, JH Lim¹⁶, SI Lim¹⁹, S Machida³, K Martens²², J Martineau¹, T Matsuda¹⁰, T Matsuyama¹¹, JN Matthews¹, M Minamino¹¹, K Miyata⁷, H Miyauchi¹¹, Y Murano³, T Nakamura²³, SW Nam¹⁹, T Nonaka⁹, S Ogio¹¹, M Ohnishi⁹, H Ohoka⁹, T Okuda¹¹, A Oshima¹¹, S Ozawa¹⁷, IH Park¹⁹, D Rodriguez¹, SY Roh²⁰, G Rubtsov¹², D Ryu²⁰, H Sagawa⁹, N Sakurai⁹, LM Scott⁵, PD Shah¹, T Shibata⁹, H Shimodaira⁹, BK Shin⁶, JD Smith¹, P Sokolsky¹, TJ Sonley¹, RW Springer¹, BT Stokes⁵, SR Stratton⁵, S Suzuki¹⁰, Y Takahashi⁹, M Takeda⁹, A Taketa⁹, M Takita⁹, Y Tameda³, H Tanaka¹¹, K Tanaka²⁴, M Tanaka¹⁰, JR Thomas¹, SB Thomas¹, GB Thomson¹, P Tinyakov^{12,21}, I Tkachev¹², H Tokuno⁹, T Tomida², R Torii⁹, S Troitsky¹², Y Tsunesada³, Y Tsuyuguchi², Y Uchihori²⁵, S Udo¹³, H Ukai², B Van Klaveren¹, Y Wada¹⁴, M Wood¹, T Yamakawa⁹, Y Yamakawa⁹, H Yamaoka¹⁰, J Yang¹⁹, S Yoshida¹⁸, H Yoshii²⁶, Z Zundel¹

¹University of Utah, ²University of Yamanashi, ³Tokyo Institute of Technology, ⁴Kinki University, ⁵Rutgers University, ⁶Hanyang University, ⁷Tokyo University of Science, ⁸Yonsei University, ⁹Institute for Cosmic Ray Research, University of Tokyo, ¹⁰Institute of Particle and Nuclear Studies, KEK, ¹¹Osaka City University, ¹²Institute for Nuclear Research of the Russian Academy of Sciences, ¹³Kanagawa University, ¹⁴Saitama University, ¹⁵Tokyo City University, ¹⁶Pusan National University, ¹⁷Waseda University, ¹⁸Chiba University ¹⁹Ewha Womans University, ²⁰Chungnam National University, ²¹University Libre de Bruxelles, ²²University of Tokyo, ²³Kochi University, ²⁴Hiroshima City University, ²⁵National Institute of Radiological Science, Japan, ²⁶Ehime University

U.S., Japan, Korea, Russia, Belgium

26 September 2013

TA Experiment

26 September 2013

TA Experiment

26 September 2013

Typical Fluorescence Event

26 September 2013

Typical SD Event

26 September 2013

First Energy Estimate

For each energy find make log₁₀S800-vs-sec(θ) curve from MC
 Estimation energy by looking up, interpolating between log₁₀S800-vs-sec(θ) curves

26 September 2013

Stereo and Hybrid Observation

Many events are seen by several detectors.

- **FD** mono has ~5° angular resolution.
- Add SD information (*hybrid* reconstruction) get ~0.5° resolution.
- Stereo FD resolution ~0.5°

Need stereo or hybrid for composition analysis.

Independent SD and FD operation until 2010.
 Hybrid trigger is in operation now.

26 September 2013

Large Scale Structure

- The only real *a priori* expectation for anisotropy is that it should be associated with the matter distribution in the Universe
 Method
 - Calculate a flux from the actual distribution of galaxies (2MASS XSCz): 110 000 galaxies from 5 Mpc to 250 Mpc
 - Take flux from beyond 250 Mpc as uniform
 - Assume proton primaries
 - Account for all interactions and redshift losses
 - Apply Gaussian smearing in arrival direction, with the angular size treated as a free parameter. This mimics magnetic field deflections and angular resolution.
 Compare prediction to data by the flux sampling test

26 September 2013

There is only one *a priori* expectation for anisotropy at the highest energies: UHECRs should be associated with distribution of visible matter in the Universe

26 September 2013

- Use 2MASS & XSCz surveys to provide sources of UHECRs: 110,000 galaxies, from 5 Mpc to 250 Mpc (assume uniform beyond 250 Mpc)
- Assume proton primaries and apply interactions and redshift losses
- Smear arrival direction by a variable angle to mimic deflections and resolution
- Make map of fluxes (including detector exposure)
 Compare prediction to data by the flux-sampling test (K-S test of the sampled fluxes between data and MC samples)

26 September 2013

Flux map with 6° smearing and no detector sensitivity

26 September 2013

Events with E > 10 EeV

26 September 2013

Events with E > 40 EeV

26 September 2013

CRA Workshop, Madison

15

Events with E > 47 EeV

26 September 2013

Events with E > 47 EeV

26 September 2013

TA "Hotspot"

By eye, one might say there's a spot in the E > 57 EeV sample

26 September 2013

TA "Hotspot"

- By eye, one might say there's a spot in the E > 57 EeV sample
- Real or apophenia?

26 September 2013

Autocorrelation

3σ (pre-trial) minimum at ~25°; largely comes from hotspot.

26 September 2013

Hotspot with oversampling

 Oversample in 25° circles (25° from autocorrelation)

26 September 2013

26 September 2013

Hotspot significance

- A priori KS test gives 3σ significance
- **Sky** map gives 3.9σ significance
- Isotropic samples give chance probability of 0.012 (2.3 σ)

26 September 2013

SD Spectrum

- 5 years of data
- 14787 events
- New analysis method
 - Cut out SD events which have poor resolution
 - Have to calculate aperture by MC
 - Can extend measurement below the energy plateau
 - Use HEP methods of Data/MC comparisons in calculating acceptance (aperture)

- Aperture calculation
 - Generate using measured spectrum and composition
 - Treat simulated data exactly the same as real data: same format, same analysis chain, same cuts
- Verify aperture calculation via Data/MC comparisons

26 September 2013

Data/MC Comparisons

 \log_{10} S800

 $\log_{10} E/eV$

26 September 2013

Energy Scale

- SD and FD energy estimations disagree
- FD estimate possesses less model-dependence
- Set SD energy scale to FD energy scale using wellreconstructed events from all 3 FD detectors
- 27% renormalization.
- 21% systematic uncertainty in FD energy scale

26 September 2013

SD Acceptance

26 September 2013

SD Spectrum with Broken PL Fit

26 September 2013

GZK Significance

What's the statistical significance of the HE break (GZK cut-off)?

 Calculate the number expected with no break and compare to the number seen

Expect 68.1, observe 26,
 5.74 σ significance

26 September 2013

TA-SD with HiRes & Auger

26 September 2013

TA-SD with HiRes & Auger

26 September 2013

Monocular FD Spectrum

- All FD spectrum measurements (monocular, stereo, hybrid) depend on a changing aperture. The aperture grows with energy.
- This changing aperture *must* be calculated by MC simulation.
- Again we rely on full analysis of simulated data in the same format as actual data, and comparisons of distributions between data and MC, to verify this calculation.

26 September 2013

Monocular Data/MC

Rp

Zenith angle

26 September 2013

SD & FD Comparisons

SD and Monocular Spectra

26 September 2013

Composition from X_{max}

- Shower longitudinal development depends on primary particle type
- FD observes shower development directly
- X_{max} is the most efficient shower parameter for determining primary particle type

26 September 2013

TA MD Hybrid Composition

• Measure X_{max} for events seen in hybrid mode by Middle Drum FD and SD. The resolution is excellent Create simulated event set; apply exactly the same procedure as with the data: acceptance bias is the same in both.

Log(E_/E_)

26 September 2013

Hybrid Data/MC Comparisons

26 September 2013

Mean X_{max} Measuremnt

26 September 2013

X_{max} by Energy

TA data look like protons in QGSJet-II, at all energies!

26 September 2013

Future Plans: Low Energy

- A lot of physics was skipped in the push to observe the GZK cutoff.
 - End of the rigidity-dependent cutoff that starts with the knee (at 3x10¹⁵ eV).
 - The second knee
 - The galactic-extragalactic transition
- Study the 10¹⁶ and 10¹⁷ eV decades with hybrid detectors.
- Need to observe from 3×10¹⁵ eV to 3×10²⁰ eV all in one experiment. That is TA, TALE and NICHE.

26 September 2013

TALE

- Add 10 telescopes at the Middle Drum site, looking from 31°-59° in elevation.
 - Operate in conjunction with the TA Middle Drum FD.
- High elevation allows measurement of close-by showers

TALE

Add infill array (400m and 600m spacing) for hybrid observation. Hybrid provides accurate geometric reconstruction for composition measurements

26 September 2013

TALE

- TALE hybrid will cover energies down to 10^{16.5} eV
- TALE will be able to confirm the observation of the Iron knee seen by Kascade-GRANDE and measure the heavy-tolight composition change expected in the 10¹⁷ eV decade.

26 September 2013

 To go lower in energy than TALE, need to use Cherenkov light
 Aim to build a Non-

Imaging CHErenkov array (NICHE) within the field-of-view of the TALE FD.

26 September 2013

TALE Events

26 September 2013

To go lower in energy than TALE, need to use Cherenkov light
 Aim to build a Non-Imaging CHErenkov array (NICHE) within the field-of-view of the TALE FD.

26 September 2013

- To go lower in energy than TALE, need to use Cherenkov light
- Aim to build a Non-Imaging CHErenkov array (NICHE) within the field-of-view of the TALE FD.
- Use light, easy-todeploy counters
- Rely on timing width for composition

Can easily measure below 10¹⁶ eV with fairly wide spacing Can go below Knee with smaller spacing Expect overlap of at least a decade in energy with TALE Cross calibration of energy and X_{max} measurements

26 September 2013

TARA

- Rates at the highest energies are too low
 Need bigger
 - experiments.
- Bistatic radar detection:
 - Remote sensing
 - Inexpensive
 - 100% duty cycle

26 September 2013

TAx4

- Fourfold increase in size of TA.
 - Add 500 SD counters (plenty of room to N and SE), 2.08 km spacing.
 - Add one SD site, 14 telescopes
- Get 20 TA-years by 2019: Definitive answer to LSS and hotspot questions.
- Proposals to be submitted this fall:
 - SD = Japan
 - FD = U.S.

26 September 2013

Conclusion

- The Telescope Array (TA) Experiment is collecting data in the northern hemisphere.
- TA is a LARGE experiment which has excellent control of systematic uncertainties.
- Important TA spectrum, composition, and anisotropy results are being presented.
- New projects are starting.
- TA is a *discovery* experiment.

26 September 2013