# Galactic Magnetic Deflections of UHECRs including realistic random field

Azadeh Keivani Department of Physics & Astronomy Louisiana State University

In collaboration with (LSU): Jim Matthews Michael Sutherland and (NYU): Glennys Farrar Jonathan Roberts

CRA Workshop Madíson, WI 9/26/2013

# Outline



Tracking UHECRs \* Method

#### Centaurus A \* Arrival directions \* Event excess

Random Field \* Example



★ Examples

# Jansson-Farrar GMF Model (JF12)

#### This model includes:

- Regular large scale component
- Random field component
- Striated random field component

Fit to the observational data: More than 40k extragalactic RM and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps



R. Jansson and G. R. Farrar, ApJ 761 (2012)

## JF12 Random Field

 Superposition of a disk component and an extended smooth halo component\*

 $\Rightarrow$  13 Free parameters

✤ Coherence length of 100 pc

Kolmogorov Random Field (KRF)

Kolmogorov Power Spectrum  $\alpha$  k <sup>-5/3</sup>

Previous works: Giacinti, et al (2012) Harari, et al (2002)

Scale the KRF with JF12 field strengths

\*R. Jansson and G. R. Farrar, ApJ 761 (2012)

#### Kolmogorov Random Field



#### Kolmogorov Random Field (continued)



#### Kolmogorov Random Field in the Galaxy



# Back-tracking

**Real Source** 



We should consider the effect of the GMF to identify the sources of UHECRs

✦ Use CRT to propagate the cosmic rays

- Use HEALPix initial positions to back-track the cosmic rays
  - ✦ Res=11, Npixels: 50,331,648
    - ✦ Res=9, Npixels: 3,145,728

Michael Sutherland, et al (2010)

http://healpix.jpl.nasa.gov/index.shtml

Most simulations are done with Pleiades NASA HEC clsuter

✦ Recording the final velocity direction and position



#### JF12 Regular Component, R==E/Z=31 EV Initial Directions



#### JF12 Regular Component, R==E/Z=31 EV Source Directions









## Simulated events from near Center of Cen A



# Centroid and standard deviation of simulated events at each rigidity



#### Centroids of Simulated events: Center of Cen A



#### Centroids of Simulated events: North of Cen A



#### Centroids of Simulated events: South of Cen A



# Cumulative number of Auger events vs. angular separation from Cen A



# Cumulative number of events vs. angular separation from Cen A

Sources: within 3° of center of Cen A Observed directions: Within 45° of Cen A

Events are ½ protons and ½ iron nuclei with E ≥ 55 EeV

We observe an excess above isotropy in the simulations

20

30

20

10



## Cumulative number of events vs. angular separation from Cen A

Sources: within 3° of center of Cen A **Observed directions:** Within 45° of Cen A

Events are ½ protons and ½ iron nuclei with  $E \ge 55 \text{ EeV}$ 

We observe an excess above isotropy in the simulations





# JF12 Regular + Random field



# JF12 Regular + Random field



## Mass composition: Assign charges to events



## Assigned charges (Z) vs. energy



### <Z> vs. Energy



# Summary

We have found the arrival direction locations of UHECR with different rigidities in our simulations.
Simulations are done for R=100 EV down to 2 EV in regular field.
A rigidity of 2 EV can be a 2 EeV proton or a 52 EeV iron.

\* We see an excess of simulated proton and iron within 45 degrees of CenA.

\* The random field can induce larger deflection magnitudes than a sole regular field depending on the source direction and the energy

 We introduced a method to calculate the charge of a CR event.
Based on the hypotheses that the events are from Cen A and correlating with simulated regions, we are able to assign a charge to each event.

Thanks for your attention