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➢ Shape of the source spectrum
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FIG. 4. The two observed events from (a) August 2011 and
(b) January 2012. Each sphere represents a DOM. Colors
represent the arrival times of the photons where red indicates
early and blue late times. The size of the spheres is a measure
for the recorded number of photo-electrons.

The atmospheric muon and neutrino background
events are simulated independently. However, at higher
energies, events induced by downward-going atmospheric
neutrinos should also contain a significant amount of at-
mospheric muons produced in the same air shower as
the neutrino [17]. Since these events are reconstructed
as downward-going, they are more likely to be rejected
with the higher NPE threshold in this region. Thus, the
number of simulated atmospheric neutrino background
events is likely overestimated here.
After unblinding 615.9 days of data, we observe two

events that pass all the selection criteria. The hypothe-
sis that the two events are fully explained by atmospheric
background including the baseline prompt atmospheric
neutrino flux [14] has a p-value of 2.9×10−3 (2.8σ). This
value includes the uncertainties on the expected number
of background events by marginalizing over a flat error
distribution. While the prompt component has large the-
oretical uncertainties, obtaining two or more events with
a probability of 10% would require a prompt flux that
is about 15 times higher than the central value of our
perturbative-QCD model. This contradicts our prelimi-
nary upper limit on the prompt flux [16]. Using an ex-
treme prompt flux at the level of this upper limit which
covers a potential unknown contribution from intrinsic
charm [18] yields a significance of 2.3σ.
The two events are shown in Fig. 4. They are from the

IC86 sample, but would have also passed the selection
criteria of the IC79 sample. Their spherical photon dis-
tributions are consistent with the pattern of Cherenkov
photons from particle cascades induced by neutrino in-
teractions within the IceCube detector. There are no in-
dications for photons from in-coming or out-going muon
or tau tracks. Hence, these events are most likely induced
by either CC interactions of νe or NC interactions of νe,
νµ or ντ . CC interactions of ντ induce tau leptons with
mean decay lengths of about 50 m at these energies [21].
The primary neutrino interaction and the secondary tau
decay initiate separate cascades which in a fraction of
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FIG. 5. NPE distributions for 615.9 days of livetime at final
selection level. The black points are the experimental data.
The error bars on the data show the Feldman-Cousins 68%
confidence interval [19]. The solid blue line marks the sum
of the atmospheric muon (dashed blue), conventional atmo-
spheric neutrino (dotted light green) and the baseline prompt
atmospheric neutrino (dot-dashed green) background. The
error bars on the line and the shaded blue region are the
statistical and systematic uncertainties, respectively. The red
line represents the cosmogenic neutrino model [6]. The shaded
region is the allowed level of the cosmogenic ν flux by Ahlers
et al. [20]. The orange line represents an E−2 power-law flux
up to an energy of 109 GeV with an all-flavor normalization
of E2φνe+νµ+ντ = 3.6×10−8 GeV sr−1 s−1 cm−2, which is the
integral upper limit obtained in a previous search in a similar
energy range [10]. The signal fluxes are summed over all neu-
trino flavors, assuming a flavor ratio of νe : νµ : ντ = 1 : 1 : 1.

such events lead to an observable double-peak structure
in the recorded waveforms. The two events do not show a
significant indication of such a signature. Figure 5 shows
the final-selection NPE distributions for the experimen-
tal data, signal models and background simulations. The
two events are near the NPE threshold of the analysis and
are consistent with a previous upper limit by IceCube [10]
on an unbroken E−2 flux, while a flux corresponding to
this upper limit predicts about 10 events above the NPE
cut. The cosmogenic neutrino model [6] predicts an event
rate of about 2 events in the corresponding livetime but
at significantly higher energies.

Maximum-likelihood methods are used to reconstruct
the two events. The likelihood is the product of the
Poisson probabilities to observe the recorded number of
photo-electrons in a given time interval and DOM for
a cascade hypothesis which depends on the interaction
vertex, deposited energy and direction. Here, the time
of the first hit mainly determines the vertex position and
the recorded NPE plays a dominant role in estimating
the deposited energy. The hit information used in the
reconstruction is extracted from an unfolding procedure
of the waveforms. The open circles in Fig. 1 indicate
the strings closest to the reconstructed vertex positions.
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energy range [10]. The signal fluxes are summed over all neu-
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such events lead to an observable double-peak structure
in the recorded waveforms. The two events do not show a
significant indication of such a signature. Figure 5 shows
the final-selection NPE distributions for the experimen-
tal data, signal models and background simulations. The
two events are near the NPE threshold of the analysis and
are consistent with a previous upper limit by IceCube [10]
on an unbroken E−2 flux, while a flux corresponding to
this upper limit predicts about 10 events above the NPE
cut. The cosmogenic neutrino model [6] predicts an event
rate of about 2 events in the corresponding livetime but
at significantly higher energies.

Maximum-likelihood methods are used to reconstruct
the two events. The likelihood is the product of the
Poisson probabilities to observe the recorded number of
photo-electrons in a given time interval and DOM for
a cascade hypothesis which depends on the interaction
vertex, deposited energy and direction. Here, the time
of the first hit mainly determines the vertex position and
the recorded NPE plays a dominant role in estimating
the deposited energy. The hit information used in the
reconstruction is extracted from an unfolding procedure
of the waveforms. The open circles in Fig. 1 indicate
the strings closest to the reconstructed vertex positions.

Observation of an Anisotropy in the Galactic Cosmic Ray arrival direction at 400 TeV with IceCube 5

Fig. 4.— The number of events seen by IceCube vs. the logarithm
of primary energy (in GeV) using the composition model described
in Hörandel (2003). Fractional contributions of proton, helium, and
iron are shown as well. At 20 TeV, the spectrum is dominated by
the proton fractional contribution of ∼ 70%, while at 400 TeV that
fraction will have decreased to ∼ 30%. The energy distributions
were determined using a full simulation of cosmic ray interactions
in the atmosphere as described in this section.

The figure shows that for a given range of Nch, vertical
events (i.e. cos θ ≈ 1) are dominated by cosmic rays with
lower average energy than horizontal events (i.e. cos θ
≈ 0.3) due to the larger ice thickness the muons would
go through before triggering the detector. We identified
regions of constant primary energy in (Nch, cos θ), de-
limited with the black lines in Figure 2, in order to select
two event samples at energies with minimal overlap and,
at the same time, with the maximum possible number of
events in the high energy sample. The low energy sam-
ple was obtained by selecting all events below the dashed
line in Figure 2, and the high energy sample by selecting
events between the solid lines in the figure.
Figure 3 shows the simulated primary energy distri-

butions for the two event samples. The estimate of the
primary cosmic ray energy has a resolution of about 0.5
in the logarithmic scale. The uncertainty of the primary
energy estimate is dominated by the fluctuations in the
air showers. The low energy sample over the Southern
sky contains 21 × 109 events; assuming the composition
described by Hörandel (2003) and shown in Figure 4.
The median primary particle energy of the low energy
sample is 20 TeV, with 68% of the events are between
4− 63 TeV. The high energy sample contains 0.58× 109

events. The median primary particle energy of the high
energy sample is 400 TeV, with 68% of the events are
between 100− 1, 258 TeV.

3. RESULTS

3.1. Sidereal Anisotropy

In order to investigate the cosmic ray arrival direction
distribution, we determine the map of deviation from
isotropy by calculating the relative intensity distribution
after azimuthal re-weighting of the arrival directions of
the data as described in the previous section. The cos-
mic ray arrival direction distribution is dominated by the
zenith angle dependence of the muon flux. The zenith an-
gle dependence is a result of a varying overburden for the
muons through the ice. Therefore, the flux for each bin
is normalized within each zenith band (or, equivalently
at the South Pole, each declination band):

Ii =
Ni(α, δ)

〈Ni(δ)〉α
, (1)

where Ii is the relative intensity for each bin of angu-
lar equatorial coordinates (α, δ), Ni is the number of
events in bin i, and 〈Ni〉 is the average number of events
for the bins along the same iso-latitude as bin i (with
the same declination δ). The sky maps in this analy-
sis are produced using the Hierarchical Equal Area Iso-
Latitude Pixelization (HEALPix) libraries (Górski et al.
2005). HEALPix subdivides the unit sphere into quadri-
lateral pixels of equal area. In this analysis, the maps
contain pixels that correspond to an angular resolution
of ∼ 3◦, which approximately corresponds to the angular
resolution of the detector.
Figure 5 show the maps of the relative intensity in

cosmic ray arrival direction in sidereal reference frame
(equatorial coordinates), for the low and high energy
samples, respectively. The color scale in the figures rep-
resents the relative intensity as described in eq. 1. The
observed sidereal anisotropy appears to evolve as a func-
tion of energy and the anisotropy pattern observed at 400
TeV shows substantial differences with respect to that
observed at 20 TeV. Note that in the maps only the pixels
below declination angle of -25◦ are shown. Pixels above
declination of -25◦ are masked due to the degradation
of the angular resolution at higher declinations. Such
degradation is to be expected because of the poorer sta-
tistical power and the domination by mis-reconstructed
events (Abbasi et al. 2011).

(a)

(b)

Fig. 5.— Figure (a) shows the IceCube cosmic ray map of the first
energy band (median energy of 20 TeV) for the relative intensity
in right ascension α. Figure (b) shows the IceCube cosmic ray
map for the second energy band (median energy of 400 TeV) of
the relative intensity in right ascension α.

In order to characterize quantitatively the general
structure of the anisotropy, we proceed as follows. For
each row of pixels in the map, a 24-bin histogram is made
from the relative intensity values of the pixels (where
each pixel’s value is included in the bin which contains
the right ascension of the center of the pixel). The rows
are spaced approximately every ∼3 degrees in declina-
tion, and the histograms are constructed down to decli-
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Fig. 2: All-particle spectrum of cosmic rays. From Ref. [15].

measurement of the cosmic ray energy spectrum, composition, and searches for anisotropy in the cosmic
ray arrival directions.

2.1.1 Energy spectrum
The CR spectrum spans over roughly 11 decades of energy. Continuously running monitoring using so-
phisticated equipment on high altitude balloons and ingenious installations on the Earth’s surface encom-
pass a plummeting flux that goes down from 104 m�2 s�1 at ⇠ 1 GeV to 10�2 km�2 yr�1 at ⇠ 1011 GeV.
Its shape is remarkably featureless, with little deviation from a constant power law (J / E�� , with
� ⇡ 3) across this large energy range. The small changes in the power index, �, are conveniently visu-
alized taking the product of the flux with some power of the energy. In this case the spectrum reveals a
leg-like structure as it is sketched in Fig. 2. The anatomy of this cosmic leg – its changes in slope, mass
composition or arrival direction – reflects the various aspects of CR propagation, production and source
distribution.

A steepening of the spectrum (� ' 2.7 ! 3.1) at an energy of about 106.5 GeV is known as the
cosmic ray knee. Composition measurements in cosmic ray observatories indicate that this feature of the
spectrum is composed of the subsequent fall-off of Galactic nuclear components with maximal energy
E/Z [16–18]. This scaling with atomic number Z is expected for particle acceleration in a magnetically
confining environment, which is only effective as long as the particle’s Larmor radius is smaller than the
size of the accelerator. If this interpretation holds, the Galactic contribution in CRs can not extend much
further than 108 GeV, assuming iron (Z = 26) as the heaviest component. However, the observational
data at these energies is inconclusive and the end-point of Galactic CRs has not been pinned down so far.
For a survey of spectral features at lower energies see [19].
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Conclusions:

• spectral indices shallower than 2.3 are inconsistent with data at 90% CL or more

• indices shallower than 2.5 are inconsistent at 68% CL

• Only for � = 2.3 normalizations from bins one (E⌫ < 1 PeV) and two (1 PeV < E⌫ < 2 PeV) are consistent
with each other (and hence with hypothesis unbroken power law)

• Overall consistency of � = 2.3 power law across all three bins is at roughly 1.5� level

• Hereafter choose � = 2.3 as reference value for unbroken power law hypothesis
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➤ Indices shallower than 2.3 are inconsistent with data at 90%C.L.
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Solving for         we arrive at

Numerology for        given in table

related to  injection power  of cosmic ray protons                    as follows:
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Numerology for        given in table
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Zeroth Order Approximation
Leaky Box Model ☛ cosmic rays propagate freely in Galaxy contained by    -field
but with some probability to escape which is constant in time
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The diffusion coefficient of cosmic rays can be roughly estimated as 2

2

3 res

g

B
Bvr

D , where Bres is 

the amplitude of random field at the resonant scale k-1 = rg. This gives approximately DK = 3×1028

RGV
1/3 cm2/s for statistically isotropic random field with Kolmogorov spectrum that is in agreement 

with a value found in the empirical diffusion model of cosmic ray propagation in the Galaxy, see 
below. The large scale convective motion of the interstellar gas with a frozen magnetic field leads to 
the convective transport of energetic particles that supplements their resonant diffusion. 

The diffusion is anisotropic locally and directed predominantly along the magnetic field but the 
large scale wandering of magnetic field lines makes diffusion close to isotropic on scales larger than 
100 pc. The analysis of this anomalous perpendicular diffusion in quasistatic interstellar magnetic 
fields is not trivial and requires the consideration beyond the scope of standard theory of weak 
turbulence [13, 15, 11]. The cosmic ray diffusion on the “anisotropic in k-space” interstellar 
turbulence is the focus of attention of the present-day theoretical investigations, see [35] and 
references therein. 

3.  Basic diffusion model 
The procedure of the modeling of cosmic ray propagation in the Galaxy can be summarized in the 
following way. One must first specify the cosmic ray sources, define the shape of the cosmic ray halo 
and the conditions at its boundaries (it is generally assumed that the energetic particles are ejected 
freely into intergalactic space, in which the cosmic ray density is negligible). The basic diffusion-
convection equations for different cosmic ray species should incorporate possible energy loss and gain 
processes in the interstellar medium, nuclear fragmentation, and radioactive decay of unstable nuclei. 
One can then calculate the distribution functions of protons and the different types of nuclei. The 
empirical transport coefficients of cosmic rays (diffusion coefficient and convection velocity), the 
properties of cosmic ray sources (total power, energy spectra of different components, elemental and 
isotopic composition), and the size of confinement region of cosmic rays in the Galaxy can be found 
from the fit to all available data on cosmic rays. 

The basic model for the investigation of cosmic-ray propagation in the Galaxy is the flat halo 
diffusion model [17, 7].  The model has simple geometry which reflects, however, the most essential  

Figure 1. A schematic representation of the region in which cosmic rays propagate in the Galaxy. The 
Sun location is indicated 
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turbulence is the focus of attention of the present-day theoretical investigations, see [35] and 
references therein. 

3.  Basic diffusion model 
The procedure of the modeling of cosmic ray propagation in the Galaxy can be summarized in the 
following way. One must first specify the cosmic ray sources, define the shape of the cosmic ray halo 
and the conditions at its boundaries (it is generally assumed that the energetic particles are ejected 
freely into intergalactic space, in which the cosmic ray density is negligible). The basic diffusion-
convection equations for different cosmic ray species should incorporate possible energy loss and gain 
processes in the interstellar medium, nuclear fragmentation, and radioactive decay of unstable nuclei. 
One can then calculate the distribution functions of protons and the different types of nuclei. The 
empirical transport coefficients of cosmic rays (diffusion coefficient and convection velocity), the 
properties of cosmic ray sources (total power, energy spectra of different components, elemental and 
isotopic composition), and the size of confinement region of cosmic rays in the Galaxy can be found 
from the fit to all available data on cosmic rays. 

The basic model for the investigation of cosmic-ray propagation in the Galaxy is the flat halo 
diffusion model [17, 7].  The model has simple geometry which reflects, however, the most essential  

Figure 1. A schematic representation of the region in which cosmic rays propagate in the Galaxy. The 
Sun location is indicated 
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Steady-state diffusion equation 
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[Gaisser,  J. Phys. Conf. Ser.  47 (2006) 15] 
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Fig. 3: The unfolded energy spectra for elemental groups of cosmic rays, represented by protons, helium, and carbon
nuclei (left panel) as well as by silicon and iron nuclei (right panel), based on KASCADE-Grande measurements. The
all-particle spectrum, which is the sum of all five individual spectra, is also shown. The error bars represent the statistical
uncertainties, while the error bands mark the maximal range of systematic uncertainties (see text). The response matrix
used is based on the interaction models QGSJET-II-02 [13] and FLUKA 2002.4 [14].

3 Error analysis
The determination of the elemental energy spectra will be
subjected to influences of different error sources. They can
roughly be classified in two categories: uncertainties in-
duced, or at least appearing whilst the deconvolution pro-
cess, as well as those embedded in the computed response
function caused by the limited Monte Carlo statistics and
by the uncertainties of the interaction models used.

3.1 Uncertainties whilst the deconvolution
Firstly, the used data set is only a small sample based on
a limited exposure, and hence suffering from statistical un-
certainties. They are propagated through the unfolding al-
gorithm and affect the quality of the solution. Furthermore,
the used deconvolution method itself can introduce a sys-
tematic bias. The influences of both sources can be evalu-
ated by means of a frequentist approach. Assuming appro-
priate spectral indices, some trial elemental energy spectra
are specified based on which a test data sample can be gen-
erated using Eq.(1). Subsequently, these data samples are
unfolded. Since the true solution is a priori known, the de-
convolution result can be compared to it to reveal statisti-
cal fluctuations induced by the limited measurement time
and a possible systematic bias induced by the unfolding
method.

3.2 Influences of limited Monte Carlo statistics
The amount of simulated air showers is strongly limited
due to computing time. Due to the limited Monte Carlo
statistics, the computation of the response function, i.e. the
parametrization of the intrinsic shower fluctuations as well
as of the detector properties, will only be possible under
certain uncertainties resulting in a systematic error of the
finally unfolded solution. In Fig. 2, the simulated charged
particle number distribution in case of proton induced air
showers with primary energy of 2× 1015 eV is shown
exemplarily. A scattering around the used parametrization
(“normal”) can be observed. This statistical uncertainty
will be treated conservatively: Considering the computed
fit parameters and their errors, some new sets of parameters

are calculated by means of a random generator. Based on
each set, new response functions can be computed and
used to unfold the data. Comparing the results reveals the
caused systematic uncertainty in the solution.
The distributions’ tails have to be inspected in more de-

tail. Because of the very low statistics, the tails can vary
within a certain range without worsen the fit result. In par-
ticular, the right tail describing the fluctuations in direction
to higher energies can have an important impact on the un-
folded solution due to the steeply falling flux of cosmic
rays. The systematic influence of the tails will be estimated
conservatively by computing two additional response func-
tions assuming in contrast to the standard case either a very
fast decreasing or an elongated tail (cf. Fig. 2). Using both
for a deconvolution and comparing the results yields the
maximal systematic error range caused by the uncertainty
in the tails description.

3.3 Uncertainties of interaction models used
D’Enterria et al. [19] compared the first Large Hadron Col-
lider (LHC) data with the predictions of variousMonte Car-
lo event generators, including the model QGSJET-II used
in this analysis. They stated that none of the investigated
models can describe consistently all measured observables
at the LHC, but, that there is basically a reasonable over-
all agreement. Nevertheless, it was shown in [8, 7] based
on this unfolding analysis that the model QGSJET-II-02
yields results, which agree with the data measured with
KASCADE-Grande. The uncertainties caused by the mod-
els used are difficult to quantify as all models can fail if
new physics is appearing in this energy range. However,
in [16, 4, 20] it was shown that the high energy interac-
tion model affects primarily the relative abundances of the
mass groups and the absolute scale in energy assignmen-
t, while specific structures in the spectra are conserved. In
addition, it is known that the low energy interaction mod-
el has less influence on the final result, as already the anal-
yses based on the KASCADE measurements have proved
[21].

[Gaisser,  J. Phys. Conf. Ser.  47 (2006) 15] 
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Fig. 3: The unfolded energy spectra for elemental groups of cosmic rays, represented by protons, helium, and carbon
nuclei (left panel) as well as by silicon and iron nuclei (right panel), based on KASCADE-Grande measurements. The
all-particle spectrum, which is the sum of all five individual spectra, is also shown. The error bars represent the statistical
uncertainties, while the error bands mark the maximal range of systematic uncertainties (see text). The response matrix
used is based on the interaction models QGSJET-II-02 [13] and FLUKA 2002.4 [14].

3 Error analysis
The determination of the elemental energy spectra will be
subjected to influences of different error sources. They can
roughly be classified in two categories: uncertainties in-
duced, or at least appearing whilst the deconvolution pro-
cess, as well as those embedded in the computed response
function caused by the limited Monte Carlo statistics and
by the uncertainties of the interaction models used.

3.1 Uncertainties whilst the deconvolution
Firstly, the used data set is only a small sample based on
a limited exposure, and hence suffering from statistical un-
certainties. They are propagated through the unfolding al-
gorithm and affect the quality of the solution. Furthermore,
the used deconvolution method itself can introduce a sys-
tematic bias. The influences of both sources can be evalu-
ated by means of a frequentist approach. Assuming appro-
priate spectral indices, some trial elemental energy spectra
are specified based on which a test data sample can be gen-
erated using Eq.(1). Subsequently, these data samples are
unfolded. Since the true solution is a priori known, the de-
convolution result can be compared to it to reveal statisti-
cal fluctuations induced by the limited measurement time
and a possible systematic bias induced by the unfolding
method.

3.2 Influences of limited Monte Carlo statistics
The amount of simulated air showers is strongly limited
due to computing time. Due to the limited Monte Carlo
statistics, the computation of the response function, i.e. the
parametrization of the intrinsic shower fluctuations as well
as of the detector properties, will only be possible under
certain uncertainties resulting in a systematic error of the
finally unfolded solution. In Fig. 2, the simulated charged
particle number distribution in case of proton induced air
showers with primary energy of 2× 1015 eV is shown
exemplarily. A scattering around the used parametrization
(“normal”) can be observed. This statistical uncertainty
will be treated conservatively: Considering the computed
fit parameters and their errors, some new sets of parameters

are calculated by means of a random generator. Based on
each set, new response functions can be computed and
used to unfold the data. Comparing the results reveals the
caused systematic uncertainty in the solution.
The distributions’ tails have to be inspected in more de-

tail. Because of the very low statistics, the tails can vary
within a certain range without worsen the fit result. In par-
ticular, the right tail describing the fluctuations in direction
to higher energies can have an important impact on the un-
folded solution due to the steeply falling flux of cosmic
rays. The systematic influence of the tails will be estimated
conservatively by computing two additional response func-
tions assuming in contrast to the standard case either a very
fast decreasing or an elongated tail (cf. Fig. 2). Using both
for a deconvolution and comparing the results yields the
maximal systematic error range caused by the uncertainty
in the tails description.

3.3 Uncertainties of interaction models used
D’Enterria et al. [19] compared the first Large Hadron Col-
lider (LHC) data with the predictions of variousMonte Car-
lo event generators, including the model QGSJET-II used
in this analysis. They stated that none of the investigated
models can describe consistently all measured observables
at the LHC, but, that there is basically a reasonable over-
all agreement. Nevertheless, it was shown in [8, 7] based
on this unfolding analysis that the model QGSJET-II-02
yields results, which agree with the data measured with
KASCADE-Grande. The uncertainties caused by the mod-
els used are difficult to quantify as all models can fail if
new physics is appearing in this energy range. However,
in [16, 4, 20] it was shown that the high energy interac-
tion model affects primarily the relative abundances of the
mass groups and the absolute scale in energy assignmen-
t, while specific structures in the spectra are conserved. In
addition, it is known that the low energy interaction mod-
el has less influence on the final result, as already the anal-
yses based on the KASCADE measurements have proved
[21].
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Fig. 3: The unfolded energy spectra for elemental groups of cosmic rays, represented by protons, helium, and carbon
nuclei (left panel) as well as by silicon and iron nuclei (right panel), based on KASCADE-Grande measurements. The
all-particle spectrum, which is the sum of all five individual spectra, is also shown. The error bars represent the statistical
uncertainties, while the error bands mark the maximal range of systematic uncertainties (see text). The response matrix
used is based on the interaction models QGSJET-II-02 [13] and FLUKA 2002.4 [14].

3 Error analysis
The determination of the elemental energy spectra will be
subjected to influences of different error sources. They can
roughly be classified in two categories: uncertainties in-
duced, or at least appearing whilst the deconvolution pro-
cess, as well as those embedded in the computed response
function caused by the limited Monte Carlo statistics and
by the uncertainties of the interaction models used.

3.1 Uncertainties whilst the deconvolution
Firstly, the used data set is only a small sample based on
a limited exposure, and hence suffering from statistical un-
certainties. They are propagated through the unfolding al-
gorithm and affect the quality of the solution. Furthermore,
the used deconvolution method itself can introduce a sys-
tematic bias. The influences of both sources can be evalu-
ated by means of a frequentist approach. Assuming appro-
priate spectral indices, some trial elemental energy spectra
are specified based on which a test data sample can be gen-
erated using Eq.(1). Subsequently, these data samples are
unfolded. Since the true solution is a priori known, the de-
convolution result can be compared to it to reveal statisti-
cal fluctuations induced by the limited measurement time
and a possible systematic bias induced by the unfolding
method.

3.2 Influences of limited Monte Carlo statistics
The amount of simulated air showers is strongly limited
due to computing time. Due to the limited Monte Carlo
statistics, the computation of the response function, i.e. the
parametrization of the intrinsic shower fluctuations as well
as of the detector properties, will only be possible under
certain uncertainties resulting in a systematic error of the
finally unfolded solution. In Fig. 2, the simulated charged
particle number distribution in case of proton induced air
showers with primary energy of 2× 1015 eV is shown
exemplarily. A scattering around the used parametrization
(“normal”) can be observed. This statistical uncertainty
will be treated conservatively: Considering the computed
fit parameters and their errors, some new sets of parameters

are calculated by means of a random generator. Based on
each set, new response functions can be computed and
used to unfold the data. Comparing the results reveals the
caused systematic uncertainty in the solution.
The distributions’ tails have to be inspected in more de-

tail. Because of the very low statistics, the tails can vary
within a certain range without worsen the fit result. In par-
ticular, the right tail describing the fluctuations in direction
to higher energies can have an important impact on the un-
folded solution due to the steeply falling flux of cosmic
rays. The systematic influence of the tails will be estimated
conservatively by computing two additional response func-
tions assuming in contrast to the standard case either a very
fast decreasing or an elongated tail (cf. Fig. 2). Using both
for a deconvolution and comparing the results yields the
maximal systematic error range caused by the uncertainty
in the tails description.

3.3 Uncertainties of interaction models used
D’Enterria et al. [19] compared the first Large Hadron Col-
lider (LHC) data with the predictions of variousMonte Car-
lo event generators, including the model QGSJET-II used
in this analysis. They stated that none of the investigated
models can describe consistently all measured observables
at the LHC, but, that there is basically a reasonable over-
all agreement. Nevertheless, it was shown in [8, 7] based
on this unfolding analysis that the model QGSJET-II-02
yields results, which agree with the data measured with
KASCADE-Grande. The uncertainties caused by the mod-
els used are difficult to quantify as all models can fail if
new physics is appearing in this energy range. However,
in [16, 4, 20] it was shown that the high energy interac-
tion model affects primarily the relative abundances of the
mass groups and the absolute scale in energy assignmen-
t, while specific structures in the spectra are conserved. In
addition, it is known that the low energy interaction mod-
el has less influence on the final result, as already the anal-
yses based on the KASCADE measurements have proved
[21].

➣	
 Taken at face value ☛ fraction of power budget allocated to nucleons of energy Ep

➣	
 Light elements possess higher magnetic rigidity
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Fig. 3: The unfolded energy spectra for elemental groups of cosmic rays, represented by protons, helium, and carbon
nuclei (left panel) as well as by silicon and iron nuclei (right panel), based on KASCADE-Grande measurements. The
all-particle spectrum, which is the sum of all five individual spectra, is also shown. The error bars represent the statistical
uncertainties, while the error bands mark the maximal range of systematic uncertainties (see text). The response matrix
used is based on the interaction models QGSJET-II-02 [13] and FLUKA 2002.4 [14].

3 Error analysis
The determination of the elemental energy spectra will be
subjected to influences of different error sources. They can
roughly be classified in two categories: uncertainties in-
duced, or at least appearing whilst the deconvolution pro-
cess, as well as those embedded in the computed response
function caused by the limited Monte Carlo statistics and
by the uncertainties of the interaction models used.

3.1 Uncertainties whilst the deconvolution
Firstly, the used data set is only a small sample based on
a limited exposure, and hence suffering from statistical un-
certainties. They are propagated through the unfolding al-
gorithm and affect the quality of the solution. Furthermore,
the used deconvolution method itself can introduce a sys-
tematic bias. The influences of both sources can be evalu-
ated by means of a frequentist approach. Assuming appro-
priate spectral indices, some trial elemental energy spectra
are specified based on which a test data sample can be gen-
erated using Eq.(1). Subsequently, these data samples are
unfolded. Since the true solution is a priori known, the de-
convolution result can be compared to it to reveal statisti-
cal fluctuations induced by the limited measurement time
and a possible systematic bias induced by the unfolding
method.

3.2 Influences of limited Monte Carlo statistics
The amount of simulated air showers is strongly limited
due to computing time. Due to the limited Monte Carlo
statistics, the computation of the response function, i.e. the
parametrization of the intrinsic shower fluctuations as well
as of the detector properties, will only be possible under
certain uncertainties resulting in a systematic error of the
finally unfolded solution. In Fig. 2, the simulated charged
particle number distribution in case of proton induced air
showers with primary energy of 2× 1015 eV is shown
exemplarily. A scattering around the used parametrization
(“normal”) can be observed. This statistical uncertainty
will be treated conservatively: Considering the computed
fit parameters and their errors, some new sets of parameters

are calculated by means of a random generator. Based on
each set, new response functions can be computed and
used to unfold the data. Comparing the results reveals the
caused systematic uncertainty in the solution.
The distributions’ tails have to be inspected in more de-

tail. Because of the very low statistics, the tails can vary
within a certain range without worsen the fit result. In par-
ticular, the right tail describing the fluctuations in direction
to higher energies can have an important impact on the un-
folded solution due to the steeply falling flux of cosmic
rays. The systematic influence of the tails will be estimated
conservatively by computing two additional response func-
tions assuming in contrast to the standard case either a very
fast decreasing or an elongated tail (cf. Fig. 2). Using both
for a deconvolution and comparing the results yields the
maximal systematic error range caused by the uncertainty
in the tails description.

3.3 Uncertainties of interaction models used
D’Enterria et al. [19] compared the first Large Hadron Col-
lider (LHC) data with the predictions of variousMonte Car-
lo event generators, including the model QGSJET-II used
in this analysis. They stated that none of the investigated
models can describe consistently all measured observables
at the LHC, but, that there is basically a reasonable over-
all agreement. Nevertheless, it was shown in [8, 7] based
on this unfolding analysis that the model QGSJET-II-02
yields results, which agree with the data measured with
KASCADE-Grande. The uncertainties caused by the mod-
els used are difficult to quantify as all models can fail if
new physics is appearing in this energy range. However,
in [16, 4, 20] it was shown that the high energy interac-
tion model affects primarily the relative abundances of the
mass groups and the absolute scale in energy assignmen-
t, while specific structures in the spectra are conserved. In
addition, it is known that the low energy interaction mod-
el has less influence on the final result, as already the anal-
yses based on the KASCADE measurements have proved
[21].

➣	
 Taken at face value ☛ fraction of power budget allocated to nucleons of energy Ep

➣	
 Light elements possess higher magnetic rigidity

➣	
 From  functional form of               ⌧(E/Z)
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The diffusion coefficient of cosmic rays can be roughly estimated as 2
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the amplitude of random field at the resonant scale k-1 = rg. This gives approximately DK = 3×1028

RGV
1/3 cm2/s for statistically isotropic random field with Kolmogorov spectrum that is in agreement 

with a value found in the empirical diffusion model of cosmic ray propagation in the Galaxy, see 
below. The large scale convective motion of the interstellar gas with a frozen magnetic field leads to 
the convective transport of energetic particles that supplements their resonant diffusion. 

The diffusion is anisotropic locally and directed predominantly along the magnetic field but the 
large scale wandering of magnetic field lines makes diffusion close to isotropic on scales larger than 
100 pc. The analysis of this anomalous perpendicular diffusion in quasistatic interstellar magnetic 
fields is not trivial and requires the consideration beyond the scope of standard theory of weak 
turbulence [13, 15, 11]. The cosmic ray diffusion on the “anisotropic in k-space” interstellar 
turbulence is the focus of attention of the present-day theoretical investigations, see [35] and 
references therein. 

3.  Basic diffusion model 
The procedure of the modeling of cosmic ray propagation in the Galaxy can be summarized in the 
following way. One must first specify the cosmic ray sources, define the shape of the cosmic ray halo 
and the conditions at its boundaries (it is generally assumed that the energetic particles are ejected 
freely into intergalactic space, in which the cosmic ray density is negligible). The basic diffusion-
convection equations for different cosmic ray species should incorporate possible energy loss and gain 
processes in the interstellar medium, nuclear fragmentation, and radioactive decay of unstable nuclei. 
One can then calculate the distribution functions of protons and the different types of nuclei. The 
empirical transport coefficients of cosmic rays (diffusion coefficient and convection velocity), the 
properties of cosmic ray sources (total power, energy spectra of different components, elemental and 
isotopic composition), and the size of confinement region of cosmic rays in the Galaxy can be found 
from the fit to all available data on cosmic rays. 

The basic model for the investigation of cosmic-ray propagation in the Galaxy is the flat halo 
diffusion model [17, 7].  The model has simple geometry which reflects, however, the most essential  

Figure 1. A schematic representation of the region in which cosmic rays propagate in the Galaxy. The 
Sun location is indicated 
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Neglecting photon absorption on CMB

[LAA, Goldberg, Halzen, and Weiler,  PLB 600 (2004) 202] 



At 1 PeV absorption on  CMB leads to 12% reduction in photon flux
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Existing data still allow sufficient plausible wiggle room 

Galactic origin of IceCube flux

E� ⇠ 100 TeV

E� > 100 TeV

Moreover ☛ sources which are optically thin up to 
may not be optically thin at

bounds in establishing origin of IceCube events suggesting ☛ importance of photon

with some cautionshould be considered 

for consistency with 
even if sources are optically thin



Take Home Message

➢ Explored level at which IceCube excess

is consistent with unbroken power law spectrum

➢ Value of spectral index of 2.3 is in reasonable agreement with data

➢       collisions appear to be favored mechanism for     production⌫pp

➢ More data is needed...



More data is coming!!!


