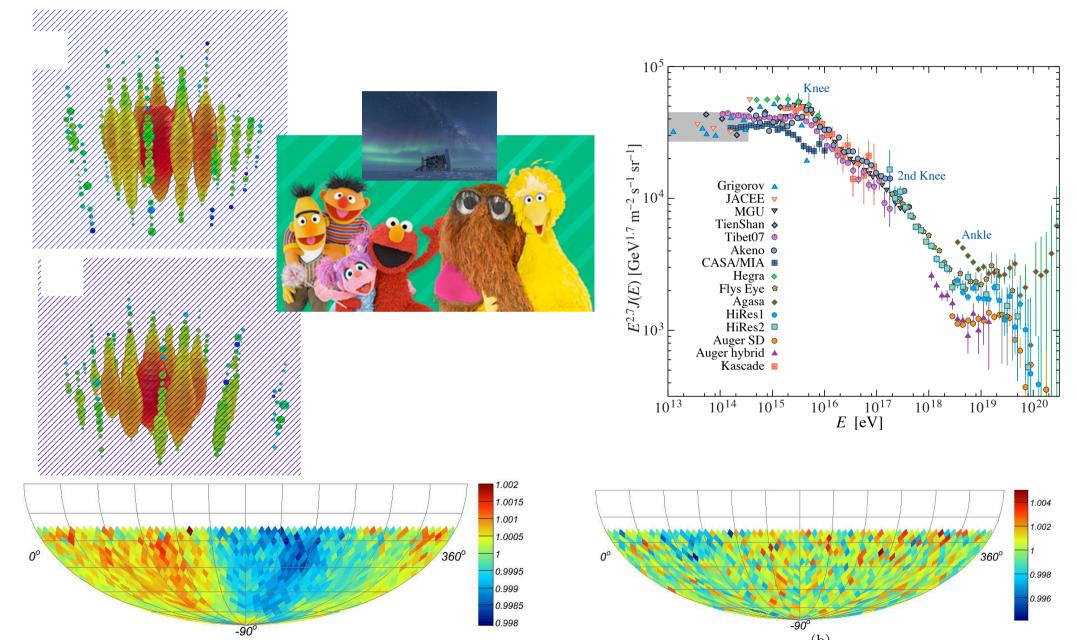
COSMIC RAY ANISOTROPY WORKSHOP

LARGE SCALE ANISOTROPY OF COSMIC RAYS AND DIRECTIONAL NEUTRINO SIGNALS FROM GALACTIC SOURCES

LUIS A. ANCHORDOQUI

Outline

> Shape of the source spectrum



Outline

- > Shape of the source spectrum
- > Waxman-Bahcall energetics
- > Consistency with upper limits on the diffuse gamma-ray flux
- > Conclusions

Based on: 1- LAA, Goldberg, Lynch, Olinto, Paul, Weiler, arXiv:1306.5021 2- LAA, Goldberg, Olinto, Paul, Vlcek, Weiler, to appear

$$\frac{dF_{\nu}}{d\Omega dA dt dE_{\nu}} = \Phi_0 \left(\frac{E_{\nu}}{1 \text{ GeV}}\right)^{-\Gamma}$$

$$\frac{dF_{\nu}}{d\Omega dA dt dE_{\nu}} = \Phi_0 \left(\frac{E_{\nu}}{1 \text{ GeV}}\right)^{-\Gamma}$$

What values of spectral index (if any) are consistent with IceCube data?

$$\frac{dF_{\nu}}{d\Omega dA dt dE_{\nu}} = \Phi_0 \left(\frac{E_{\nu}}{1 \text{ GeV}}\right)^{-1}$$

What values of spectral index (if any) are consistent with IceCube data?

Partition data into three bins:

> 26 events $E_{\nu}/\text{PeV} \in (0.05, 1)$ 🖛 10 atmospheric background

> 2 events $E_{\nu}/{
m PeV} \in (1,2)$ 🖛 zero background events

> zero events $E_{\nu}/\text{PeV} \in (2, 10)$ reverse background events

$$\frac{dF_{\nu}}{d\Omega dA dt dE_{\nu}} = \Phi_0 \left(\frac{E_{\nu}}{1 \text{ GeV}}\right)^{-1}$$

What values of spectral index (if any) are consistent with IceCube data?

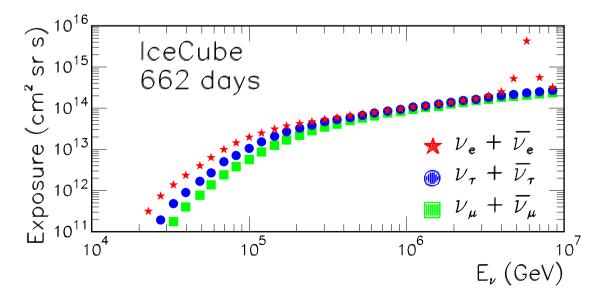
Partition data into three bins:

> 26 events $E_{\nu}/\text{PeV} \in (0.05, 1)$ 🖛 10 atmospheric background

> 2 events $E_{\nu}/{
m PeV} \in (1,2)$ 🖛 zero background events

> zero events $E_{\nu}/\text{PeV} \in (2, 10)$ 🖛 zero background events

Fit neutrino flux using IceCube's energy-dependent flavor-dependent exposure



Flavor-averaged normalization Φ_0 in units of $({
m GeV}\cdot{
m cm}^2\cdot{
m s}\cdot{
m sr})^{-1}$

Г	$\Phi_0^{E < 1 \mathrm{PeV}} \Phi_0^{1 \mathrm{PeV} < E < 2 \mathrm{PeV}}$	$\Phi_{68}^{ m max}$	$\Phi_{90}^{ m max}$	
2.0	1.66×10^{-8} 9.50×10^{-9}	3.94×10^{-9}	7.44×10^{-9}	
2.1	5.70× 10 ⁻⁸ 3.91× 10 ⁻⁸	1.84×10^{-8}	3.49×10^{-8}	
2.2	1.95×10^{-7} 1.61×10^{-7}	0.862×10^{-7}	1.63×10^{-7}	68% C.L. (Φ_{68}^{\max})
2.3	6.63×10^{-7} 6.62×10^{-7}	4.02×10^{-7}	$\left 7.61 \times \ 10^{-7} \right $	
	2.24×10^{-6} 2.72×10^{-6}	•		0007 C T (A max)
2.5	$7.54 \times 10^{-6} 11.2 \times 10^{-6}$	8.73×10^{-6}	16.5×10^{-6}	

Г	$\Phi_0^{E<1{\rm PeV}}$	$\Phi_0^{\rm 1PeV < \it E < 2 PeV}$	$\Phi_{68}^{ m max}$	$\Phi_{90}^{ m max}$	
2.0	1.66×10^{-8}	9.50×10^{-9}	3.94×10^{-9}	7.44×10^{-9}	
2.1	5.70×10^{-8}	3.91×10^{-8}	1.84×10^{-8}	349×10^{-8}	
2.2	1.95×10^{-7}	1.61×10^{-7}	0.862×10^{-7}	1.63×10^{-7}	68% C.L. (Φ_{68}^{\max})
		6.62×10^{-7}			
2.4	2.24×10^{-6}	2.72×10^{-6}	1.88×10^{-6}	3.55×10^{-6}	90% C.L. (Φ_{90}^{\max})
2.5	7.54×10^{-6}	11.2×10^{-6}	8.73×10^{-6}	16.5×10^{-6}	

> Indices shallower than 2.3 are inconsistent with data at 90%C.L.

Г	$\Phi_0^{E<1{ m PeV}}$	$\Phi_0^{1{ m PeV} < E < 2{ m PeV}}$	$\Phi_{68}^{ m max}$	$\Phi_{90}^{ m max}$	
2.0	1.66×10^{-8}	9.50×10^{-9}	$3.94 imes10^{-9}$	7.44× 10 ⁻⁹	
2.1	5.70×10^{-8}	3.91×10^{-8}	1.84×10^{-8}	3.49×10^{-8}	
2.2	1.95×10^{-7}	1.61×10^{-7}	0.862×10^{-7}	1.63×10^{-7}	68% C.L. (Φ_{68}^{\max})
		6.62×10^{-7}			
2.4	2.24×10^{-6}	2.72×10^{-6}	1.88×10^{-6}	3.55×10^{-6}	90% C.L. (Φ_{90}^{\max})
2.5	7.54×10^{-6}	11.2×10^{-6}	8.73×10^{-6}	16.5×10^{-6}	

> Indices shallower than 2.3 are inconsistent with data at 90%C.L.

> Indices shallower than 2.5 are inconsistent with data at 68%C.L.

Г	$\Phi_0^{E<1{ m PeV}}$	$\Phi_0^{1 {\rm PeV} < E < 2 {\rm PeV}}$	$\Phi_{68}^{ m max}$	$\Phi_{90}^{ m max}$	
2.0	1.66×10^{-8}	9.50×10^{-9}	3.94×10^{-9}	7.44×10^{-9}	
2.1	5.70×10^{-8}	3.91×10^{-8}	1.84×10^{-8}	349×10^{-8}	
2.2	1.95×10^{-7}	1.61×10^{-7}	0.862×10^{-7}	1.63×10^{-7}	68% C.L. (Φ_{68}^{\max})
2.3	6.63×10^{-7}	6.62×10^{-7}	$ 4.02 \times 10^{-7}$	$ 7.61 \times 10^{-7} $	
2.4	2.24×10^{-6}	2.72×10^{-6}	1.88×10^{-6}	3.55×10^{-6}	90% C.L. (Φ_{90}^{\max})
		11.2×10^{-6}			

> Indices shallower than 2.3 are inconsistent with data at 90%C.L.

> Indices shallower than 2.5 are inconsistent with data at 68%C.L.

> Only for $\Gamma = 2.3$ r normalizations from $E_{\nu}/\text{PeV} \in (0.05, 1)\&(1, 2)$ bins are consistent with each other

-and hence with hypothesis of unbroken power law-

Г	$\Phi_0^{E<1{ m PeV}}$	$\Phi_0^{1 {\rm PeV} < E < 2 {\rm PeV}}$	$\Phi_{68}^{ m max}$	$\Phi_{90}^{ m max}$	
2.0	1.66×10^{-8}	9.50×10^{-9}	3.94×10^{-9}	7.44×10^{-9}	
2.1	5.70×10^{-8}	3.91×10^{-8}	1.84×10^{-8}	349×10^{-8}	
2.2	1.95×10^{-7}	1.61×10^{-7}	0.862×10^{-7}	1.63×10^{-7}	68% C.L. (Φ_{68}^{\max})
2.3	6.63×10^{-7}	6.62×10^{-7}	4.02×10^{-7}	$ 7.61 \times 10^{-7} $	
2.4	2.24×10^{-6}	2.72×10^{-6}	1.88×10^{-6}	$ 3.55 \times 10^{-6} $	90% C.L. (Φ_{90}^{\max})
	I .	11.2×10^{-6}			

> Indices shallower than 2.3 are inconsistent with data at 90%C.L.

> Indices shallower than 2.5 are inconsistent with data at 68%C.L.

> Only for $\Gamma = 2.3$ r normalizations from $E_{\nu}/\text{PeV} \in (0.05, 1)\&(1, 2)$ bins are consistent with each other

-and hence with hypothesis of unbroken power law-

 \blacktriangleright Overall consistency of $\Gamma=2.3~$ across all 3 energy bins is at $pprox 1.5\sigma$ level

Comparing E_{π^\pm} at source to $E_{
u}$ detected at Earth one gets energy conservation relation

$$\epsilon_{\nu} \epsilon_{\pi^{\pm}} \int_{E_1}^{E_2} \frac{dF_{CR}^p}{dE \, dA \, dt} \, EdE = \int_{E_{\nu^1}}^{E_{\nu^2}} \frac{dF_{\nu}}{dE_{\nu} \, dA \, dt} \, E_{\nu} dE_{\nu}$$

Comparing
$$E_{\pi^{\pm}}$$
 at source to E_{ν} detected at Earth one gets energy conservation relation
 $\epsilon_{\nu} \epsilon_{\pi^{\pm}} \int_{E_1}^{E_2} \frac{dF_{CR}^p}{dE \, dA \, dt} E dE = \int_{E_{\nu^1}}^{E_{\nu^2}} \frac{dF_{\nu}}{dE_{\nu} \, dA \, dt} E_{\nu} dE_{\nu}$

$$E_{\nu 1} = \frac{E_1}{16}$$

Comparing $E_{\pi^{\pm}}$ at source to E_{ν} detected at Earth one gets energy conservation relation $\epsilon_{\nu} \epsilon_{\pi^{\pm}} \int_{E_{1}}^{E_{2}} \frac{dF_{\text{CR}}^{p}}{dE \, dA \, dt} E dE = \int_{E_{\nu^{1}}}^{E_{\nu^{2}}} \frac{dF_{\nu}}{dE_{\nu} \, dA \, dt} E_{\nu} dE_{\nu}$ $E_{\nu^{1}} = \frac{E_{1}}{16}$

Integrals may be done analytically to yield (for $\Gamma \neq 2$)

$$\epsilon_{\nu} \epsilon_{\pi^{\pm}} C_{\rm CR}^{p}(\Gamma) \frac{E_{1}^{2-\Gamma} - E_{2}^{2-\Gamma}}{\Gamma - 2} = C_{\nu}(\Gamma) \frac{(E_{1}/16)^{2-\Gamma} - (E_{2}/16)^{2-\Gamma}}{\Gamma - 2}$$

Comparing E_{π^\pm} at source to E_{ν} detected at Earth one gets energy conservation relation

$$\epsilon_{\nu} \epsilon_{\pi^{\pm}} \int_{E_{1}}^{E_{2}} \frac{dF_{\text{CR}}^{p}}{dE \, dA \, dt} \, E dE = \int_{E_{\nu 1}}^{E_{\nu 2}} \frac{dF_{\nu}}{dE_{\nu} \, dA \, dt} \, E_{\nu} dE_{\nu} \\ \searrow E_{\nu 1} = \frac{E_{1}}{16}$$

Integrals may be done analytically to yield (for $\Gamma \neq 2$)

Comparing E_{π^\pm} at source to $E_{
u}$ detected at Earth one gets energy conservation relation

$$\epsilon_{\nu} \epsilon_{\pi^{\pm}} \int_{E_1}^{E_2} \frac{dF_{CR}^p}{dE \, dA \, dt} \, E dE = \int_{E_{\nu 1}}^{E_{\nu 2}} \frac{dF_{\nu}}{dE_{\nu} \, dA \, dt} \, E_{\nu} dE_{\nu}$$
$$E_{\nu 1} = \frac{E_1}{16}$$

Integrals may be done analytically to yield (for $\Gamma \neq 2$)

Assumption of flavor equilibration $\blacktriangleright \ \Phi_0^{total} = 3 \Phi_0$

$$\epsilon_{\pi^{\pm}} = \left(\frac{1}{16}\right)^{2-\Gamma} \frac{C_{\nu}(\Gamma)}{\epsilon_{\nu} C_{\mathrm{CR}}^{p}(\Gamma)}$$

$$\epsilon_{\pi^{\pm}} = \left(\frac{1}{16}\right)^{2-\Gamma} \frac{C_{\nu}(\Gamma)}{\epsilon_{\nu} C_{\mathrm{CR}}^{p}(\Gamma)}$$

Numerology for $C_{
u}$ given in table

 $C_{\nu}(2.3) = 12\pi \times 6.6 \times 10^{-7} \,\mathrm{GeV}^{2.3} \,(\mathrm{GeV}\,\mathrm{s}\,\mathrm{cm}^2)^{-1}$

$$\epsilon_{\pi^{\pm}} = \left(\frac{1}{16}\right)^{2-\Gamma} \frac{C_{\nu}(\Gamma)}{\epsilon_{\nu} C_{\mathrm{CR}}^{p}(\Gamma)}$$

Numerology for $C_{
u}$ given in table

$$C_{\nu}(2.3) = 12\pi \times 6.6 \times 10^{-7} \,\mathrm{GeV}^{2.3} \,(\mathrm{GeV}\,\mathrm{s}\,\mathrm{cm}^2)^{-1}$$

 $C_{
m CR}^p$ related to injection power of cosmic ray protons $d\epsilon_{
m CR}^p/dt$ as follows:

$$\frac{d\epsilon_{\mathrm{CR}}^{p}}{dt}[E_{1}, E_{2}] = A \int_{E_{1}}^{E_{2}} \frac{dF_{\mathrm{CR}}^{p}}{dE \, dA \, dt} E \, dE = A \int_{E_{1}}^{E_{2}} \left(\frac{dF_{\mathrm{CR}}^{p}}{dE \, dA \, dt} E^{\Gamma}\right) E^{(1-\Gamma)} dE$$
$$= A C_{\mathrm{CR}}^{p} \frac{\left(E_{1}^{(2-\Gamma)} - E_{2}^{(2-\Gamma)}\right)}{\Gamma - 2}$$

$$\epsilon_{\pi^{\pm}} = \left(\frac{1}{16}\right)^{2-\Gamma} \frac{C_{\nu}(\Gamma)}{\epsilon_{\nu} C_{\mathrm{CR}}^{p}(\Gamma)}$$

Numerology for $C_{
u}$ given in table

$$C_{\nu}(2.3) = 12\pi \times 6.6 \times 10^{-7} \,\mathrm{GeV^{2.3}} \,(\mathrm{GeV\,s\,cm^2})^{-1}$$

 $C^p_{
m CR}$ related to injection power of cosmic ray protons $d\epsilon^p_{
m CR}/dt$ as follows:

$$\frac{d\epsilon_{\mathrm{CR}}^{p}}{dt}[E_{1}, E_{2}] = A \int_{E_{1}}^{E_{2}} \frac{dF_{\mathrm{CR}}^{p}}{dE \, dA \, dt} E \, dE = A \int_{E_{1}}^{E_{2}} \left(\frac{dF_{\mathrm{CR}}^{p}}{dE \, dA \, dt} E^{\Gamma}\right) E^{(1-\Gamma)} dE$$
$$= A C_{\mathrm{CR}}^{p} \frac{\left(E_{1}^{(2-\Gamma)} - E_{2}^{(2-\Gamma)}\right)}{\Gamma - 2}$$

Inverting this result and using the fact that $E_2^{(2-\Gamma)} \ll E_1^{(2-\Gamma)}$

•
$$C_{\mathrm{CR}}^p = \frac{(\Gamma - 2) E_1^{(\Gamma - 2)} \frac{d\epsilon_{\mathrm{CR}}^p}{dt} [E_1, E_2]}{A}$$

Leaky Box Model \blacktriangleright cosmic rays propagate freely in Galaxy contained by \vec{B} -field but with some probability to escape which is constant in time $\tau(E/Z) \propto (E/Z)^{-\delta}$

Leaky Box Model \blacktriangleright cosmic rays propagate freely in Galaxy contained by \vec{B} -field but with some probability to escape which is constant in time $\tau(E/Z)\propto (E/Z)^{-\delta}$

• Effective way to determine rigidity behavior is to uncover spectrum of secondary nuclei Fits to energy dependence of secondary to primary ratios yields $\delta = 0.6$ not far from expectations for Kraichnan diffusion

[Gupta and Webber, Ap.J. 340 (1989) 1124; Swordy, Heureux, Meyer, and Muller, Ap.J. 403 (1993) 658]

Leaky Box Model \blacktriangleright cosmic rays propagate freely in Galaxy contained by \vec{B} -field but with some probability to escape which is constant in time $\tau(E/Z) \propto (E/Z)^{-\delta}$

• Effective way to determine rigidity behavior is to uncover spectrum of secondary nuclei Fits to energy dependence of secondary to primary ratios yields $\delta = 0.6$ not far from expectations for Kraichnan diffusion [Gupta and Webber, Ap.J. **340** (1989) 1124; Swordy, Heureux, Meyer, and Muller, Ap.J. **403** (1993) 658]

 \bullet Taken together with spectral index of Fermi source $\,\alpha\simeq 2.1\,$ this reproduces observed spectrum $\propto E^{-2.7}$ below knee

Leaky Box Model \blacktriangleright cosmic rays propagate freely in Galaxy contained by \vec{B} -field but with some probability to escape which is constant in time $\tau(E/Z) \propto (E/Z)^{-\delta}$

$$n_{\rm CR}(E) \sim Q(E) \stackrel{\uparrow}{\tau} (E/Z)$$

$$\downarrow$$

$$Q(E) \propto E^{-\alpha}$$

• Effective way to determine rigidity behavior is to uncover spectrum of secondary nuclei Fits to energy dependence of secondary to primary ratios yields $\delta = 0.6$ not far from expectations for Kraichnan diffusion [Gupta and Webber, Ap.J. **340** (1989) 1124; Swordy, Heureux, Meyer, and Muller, Ap.J. **403** (1993) 658]

 \bullet Taken together with spectral index of Fermi source $\,\alpha\simeq 2.1\,$

this reproduces observed spectrum $\propto E^{-2.7}$ below knee

Possibly more plausible diffusion model

associated with Kolmogorov spectrum of \vec{B} -turbulence \blacktriangleright characterized by $\delta = 0.3$ [Biermann, A.&A. 271 (1993) 649]

Leaky Box Model \blacktriangleright cosmic rays propagate freely in Galaxy contained by \vec{B} -field but with some probability to escape which is constant in time $\tau(E/Z) \propto (E/Z)^{-\delta}$

$$n_{\rm CR}(E) \sim Q(E) \stackrel{\uparrow}{\tau} (E/Z)$$

$$\downarrow$$

$$Q(E) \propto E^{-\alpha}$$

• Effective way to determine rigidity behavior is to uncover spectrum of secondary nuclei Fits to energy dependence of secondary to primary ratios yields $\delta = 0.6$ not far from expectations for Kraichnan diffusion [Gupta and Webber, Ap.J. **340** (1989) 1124; Swordy, Heureux, Meyer, and Muller, Ap.J. **403** (1993) 658]

 \bullet Taken together with spectral index of Fermi source $\,\alpha\simeq 2.1\,$

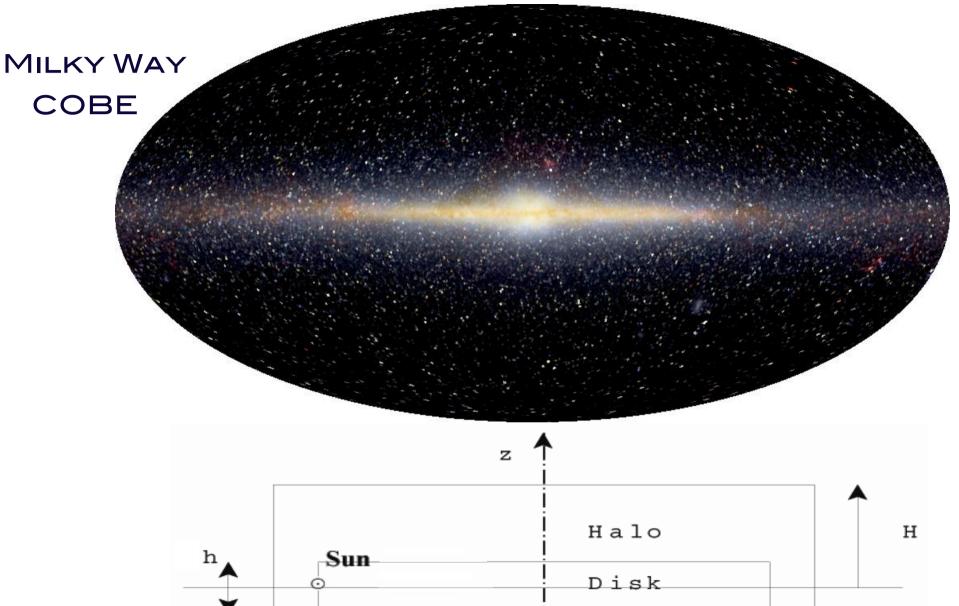
this reproduces observed spectrum $\propto E^{-2.7}$ below knee

Possibly more plausible diffusion model

associated with Kolmogorov spectrum of \vec{B} -turbulence recharacterized by $\delta=0.3$ [Biermann, A.&A. 271 (1993) 649]

 \bullet This implies steeper cosmic ray injection spectrum $\blacktriangleright \alpha \simeq 2.4$

FIRST ORDER APPROXIMATION



R

FIRST ORDER APPROXIMATION (cont'd) Steady-state diffusion equation $\nabla_i D_{ij}(\vec{r}, E) \nabla_j n_{\rm CR}(\vec{r}, E) + Q(\vec{r}, E) = 0$ $D_{ij} = (D_{\parallel} - D_{\perp}) b_i b_j + D_{\perp} \delta_{ij} + D_A \epsilon_{ijk} b_k \text{ diffusion tensor}$ $b_i = B_{{\rm reg},i}/B_{{\rm reg}} \leftarrow \text{unit vector along regular galactic magnetic field}$

>Symmetric terms of D_{ij} contain diffusion coefficients parallel (field-aligned $D_{||}$) and perpendicular (transverse D_{\perp}) which describe diffusion due to small-scale turbulent fluctuations

>Antisymmetric (Hall) diffusion coefficient D_A responsible for macroscopic drift currents

$$\label{eq:second} \texttt{>Anisotropy vector} \ \ \delta_i = \frac{3 \ J_i(\vec{r},E)}{n_{\rm CR}(\vec{r},E) \ c}$$

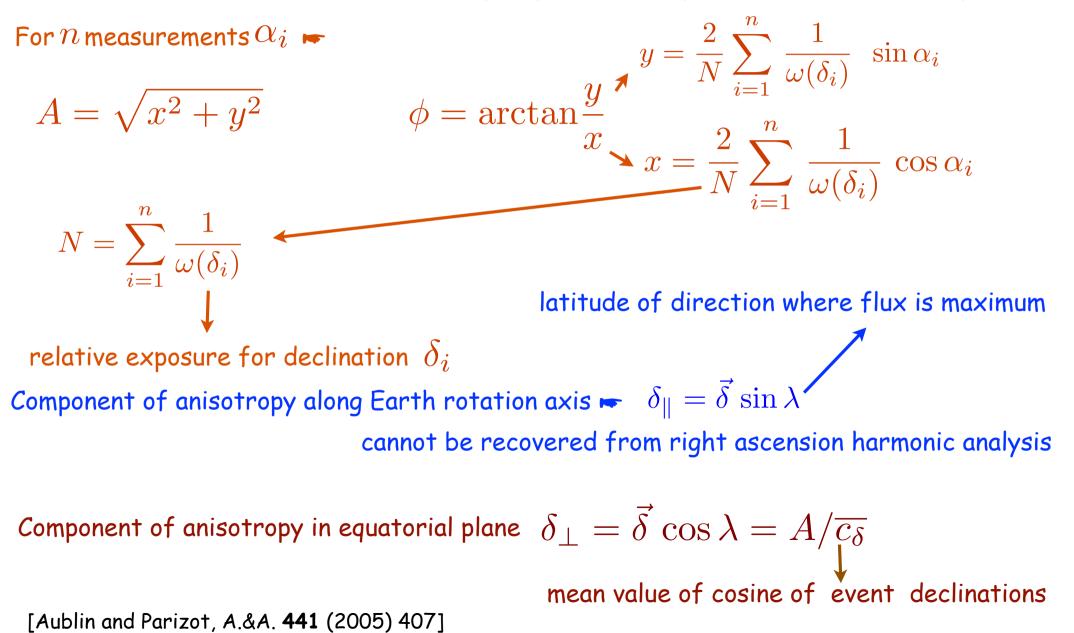
>Under assumption of azimuthal symmetry of system

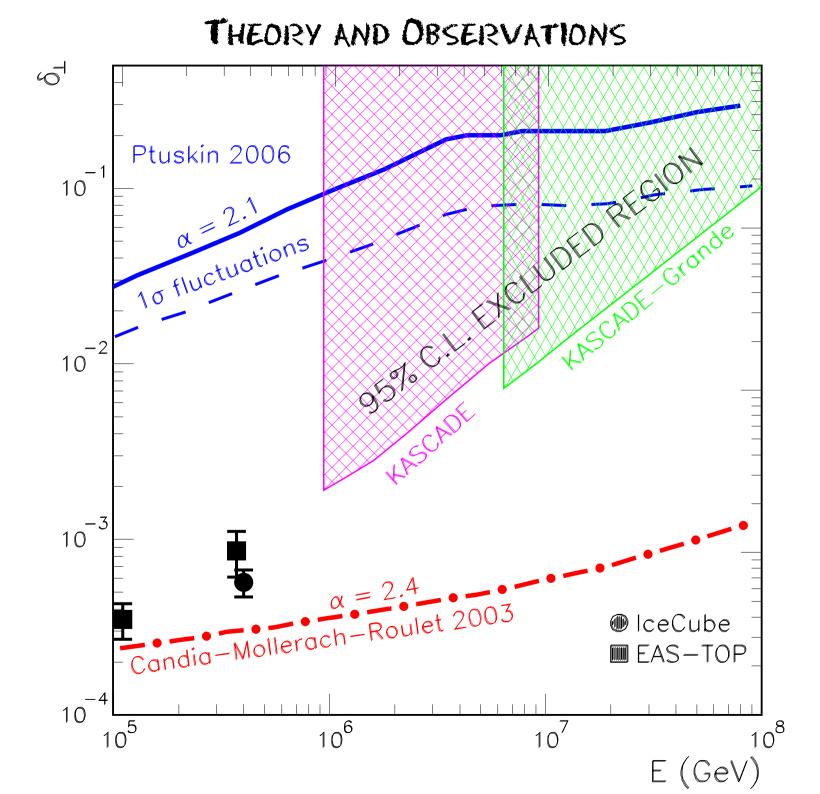
$$J_r = -D_{\perp} \frac{\partial n_{\rm CR}}{\partial r} + D_A \frac{\partial n_{\rm CR}}{\partial z} \qquad \qquad J_{\phi} = 0 \qquad \qquad J_z = -D_A \frac{\partial n_{\rm CR}}{\partial r} - D_{\perp} \frac{\partial n_{\rm CR}}{\partial z}$$

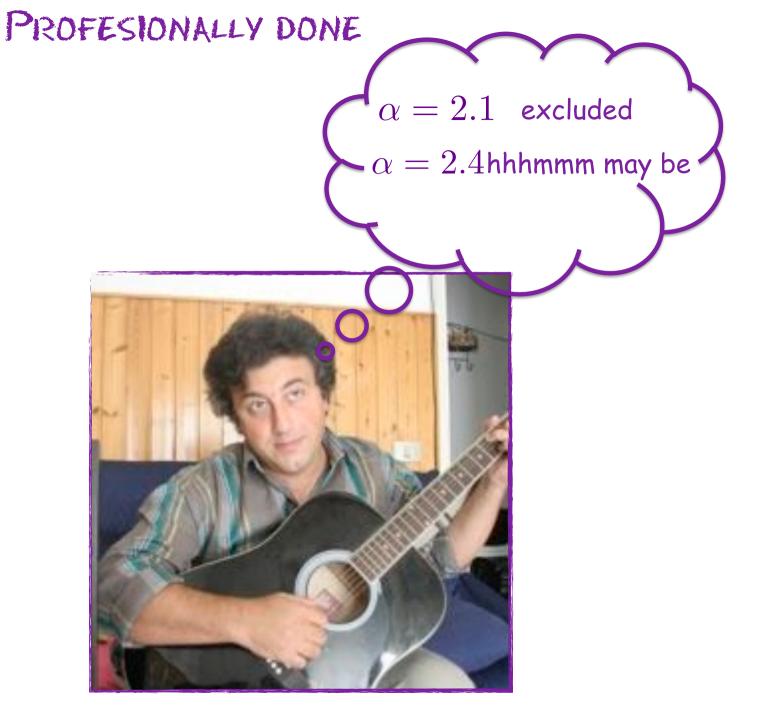
Observatories which experience stable operation over a period of a year or more attain uniform exposure in right ascension $\blacktriangleright \alpha$

Right ascension distribution of flux arriving at detector

can be characterized by amplitudes and phases of its Fourier expansion

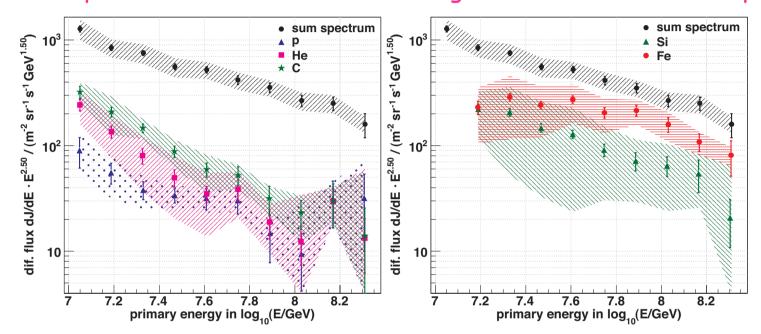




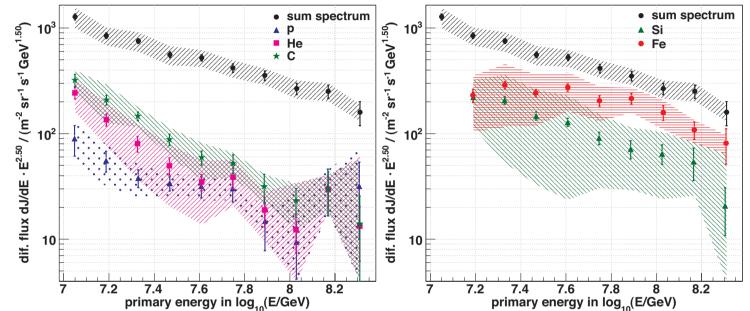


[Amato and Blasi, JCAP 1201 (2012) 011]

> For $\tau = 2 \times 10^7 (E_{\text{GeV}}/Z)^{-0.33} \text{ yr}$ [Gaisser, J. Phys. Conf. Ser. 47 (2006) 15] total power budget for cosmic rays beyond knee is $d\epsilon_{\text{CR}}/dt \simeq 2 \times 10^{39} \text{ erg/s}$ For τ = 2 × 10⁷ (E_{GeV}/Z)^{-0.33} yr [Gaisser, J. Phys. Conf. Ser. 47 (2006) 15] total power budget for cosmic rays beyond knee is de_{CR}/dt ≈ 2 × 10³⁹ erg/s
 Data from KASCADE-Grande indicate that at ~ 30 PeV ICRG flux of protons is about an order of magnitude smaller than all-species CR flux

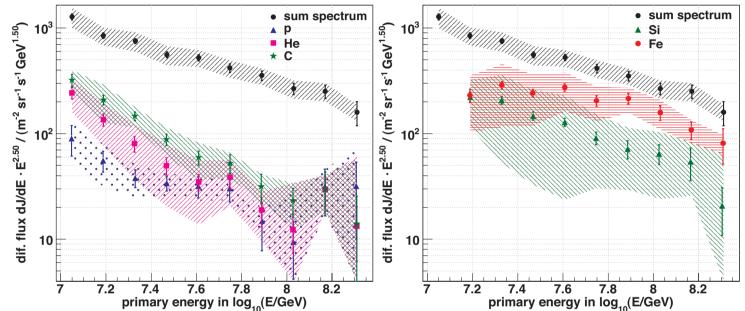


 For τ = 2 × 10⁷ (E_{GeV}/Z)^{-0.33} yr [Gaisser, J. Phys. Conf. Ser. 47 (2006) 15] total power budget for cosmic rays beyond knee is decR/dt ≈ 2 × 10³⁹ erg/s
 Data from KASCADE-Grande indicate that at ~ 30 PeV ICRC flux of protons is about an order of magnitude smaller than all-species CR flux



> Taken at face value \blacktriangleright fraction of power budget allocated to nucleons of energy E_p which do not escape the Galaxy is about 0.1 of all-species power

 For τ = 2 × 10⁷ (E_{GeV}/Z)^{-0.33} yr [Gaisser, J. Phys. Conf. Ser. 47 (2006) 15] total power budget for cosmic rays beyond knee is decR/dt ≈ 2 × 10³⁹ erg/s
 Data from KASCADE-Grande indicate that at ~ 30 PeV ICRG flux of protons is about an order of magnitude smaller than all-species CR flux

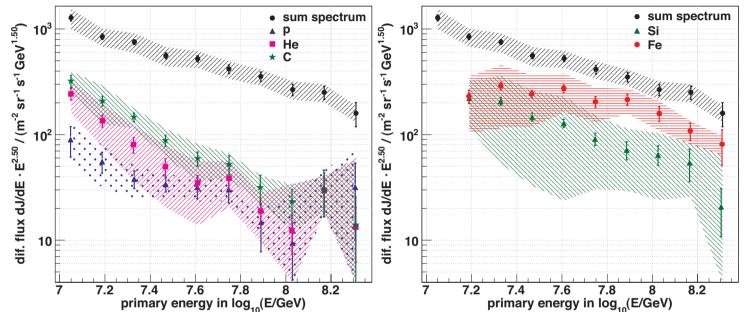


> Taken at face value \blacktriangleright fraction of power budget allocated to nucleons of energy E_p which do not escape the Galaxy is about 0.1 of all-species power

> Light elements possess higher magnetic rigidity

and are therefore more likely to escape Galaxy

 For τ = 2 × 10⁷ (E_{GeV}/Z)^{-0.33} yr [Gaisser, J. Phys. Conf. Ser. 47 (2006) 15] total power budget for cosmic rays beyond knee is de_{CR}/dt ≃ 2 × 10³⁹ erg/s
 Data from KASCADE-Grande indicate that at ~ 30 PeV ICRG flux of protons is about an order of magnitude smaller than all-species CR flux



> Taken at face value \blacktriangleright fraction of power budget allocated to nucleons of energy E_p which do not escape the Galaxy is about 0.1 of all-species power

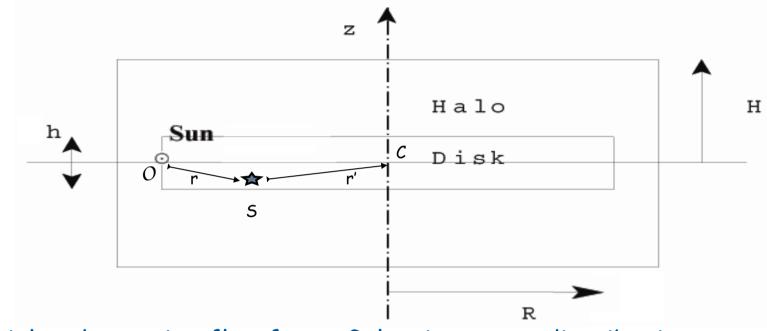
> Light elements possess higher magnetic rigidity

and are therefore more likely to escape Galaxy

> From functional form of $\tau(E/Z)$

estimate survival probability for protons at $30~{
m PeV}$ to be 46% of that at $E_{\rm knee}$ proton fraction of total flux at injection $raction = \zeta = 0.1/0.46 = 0.22$

APPROPRIATELY WEIGHTED SURFACE AREA FOR ARRIVING FLUX



Energy-weighted neutrino flux from Galactic source distribution

(with normal incidence at O)

$$E_{\nu} \frac{dF_{\nu_{\alpha}}}{dAdtdE_{\nu}} = \frac{1}{4\pi} \sum_{i} \frac{P_{i}}{r_{i}^{2}}$$
$$= \frac{1}{4\pi} \sum_{i} \frac{P_{i}}{R^{2} + 2R r_{i}' \cos \theta_{i}' + r_{i}'^{2}}$$

 P_i is power output of source i and $heta_i'$ is angle subtended by $ec{r_i}'$ and $ec{R}$

$$E_{\nu} \frac{dF_{\nu_{\alpha}}}{dAdtdE_{\nu}} = \frac{1}{4\pi} \frac{P}{\pi R^2} \int_0^{r'_{\text{max}}} r' dr' \int_0^{2\pi} d\theta' \frac{1}{R^2 + 2r'R\cos\theta' + r'^2}$$
$$= \frac{1}{4\pi} \frac{P}{\pi R^2} \frac{1}{2} \int_0^{r'_{\text{max}}^2} dr'^2 \frac{2\pi}{R^2 - r'^2}$$
$$= \frac{P}{4\pi R^2} \ln\left[\frac{1}{1 - (r'_{\text{max}}/R)^2}\right]$$

$$E_{\nu} \frac{dF_{\nu_{\alpha}}}{dAdtdE_{\nu}} = \frac{1}{4\pi} \frac{P}{\pi R^2} \int_0^{r'_{\text{max}}} r' dr' \int_0^{2\pi} d\theta' \frac{1}{R^2 + 2r'R\cos\theta' + r'^2}$$
$$= \frac{1}{4\pi} \frac{P}{\pi R^2} \frac{1}{2} \int_0^{r'_{\text{max}}^2} dr'^2 \frac{2\pi}{R^2 - r'^2}$$
$$= \frac{P}{4\pi R^2} \ln\left[\frac{1}{1 - (r'_{\text{max}}/R)^2}\right]$$

Divergence is avoided by cutting off integral for sources within ring of radius h at position of observer $\blacktriangleright r'_{\max} = R - h$

$$E_{\nu} \frac{dF_{\nu_{\alpha}}}{dAdtdE_{\nu}} = \frac{1}{4\pi} \frac{P}{\pi R^2} \int_0^{r'_{\max}} r' dr' \int_0^{2\pi} d\theta' \frac{1}{R^2 + 2r'R\cos\theta' + r'^2}$$
$$= \frac{1}{4\pi} \frac{P}{\pi R^2} \frac{1}{2} \int_0^{r'_{\max}^2} dr'^2 \frac{2\pi}{R^2 - r'^2}$$
$$= \frac{P}{4\pi R^2} \ln\left[\frac{1}{1 - (r'_{\max}/R)^2}\right]$$

Divergence is avoided by cutting off integral for sources within ring of radius h at position of observer $\blacktriangleright r'_{\max} = R - h$

After this regularization - energy-weighted neutrino flux at Earth becomes

$$E_{\nu} \frac{dF_{\nu_{\alpha}}}{dAdtdE_{\nu}} = \frac{P}{4\pi R^2} \ln \left[\frac{1}{\tau(2-\tau)}\right]$$
$$\downarrow_{\tau \equiv h/R}$$

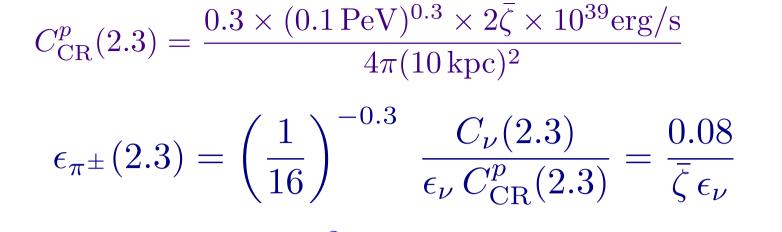
$$E_{\nu} \frac{dF_{\nu_{\alpha}}}{dAdtdE_{\nu}} = \frac{1}{4\pi} \frac{P}{\pi R^2} \int_0^{r'_{\max}} r' dr' \int_0^{2\pi} d\theta' \frac{1}{R^2 + 2r'R\cos\theta' + r'^2}$$
$$= \frac{1}{4\pi} \frac{P}{\pi R^2} \frac{1}{2} \int_0^{r'_{\max}^2} dr'^2 \frac{2\pi}{R^2 - r'^2}$$
$$= \frac{P}{4\pi R^2} \ln\left[\frac{1}{1 - (r'_{\max}/R)^2}\right]$$

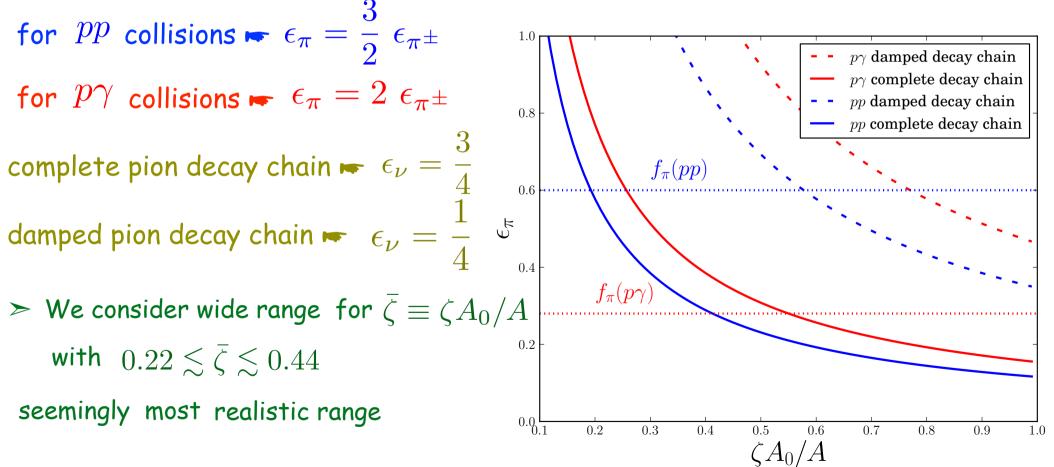
Divergence is avoided by cutting off integral for sources within ring of radius h at position of observer $\blacktriangleright \ r'_{\rm max} = R - h$

After this regularization - energy-weighted neutrino flux at Earth becomes

$$E_{\nu} \frac{dF_{\nu_{\alpha}}}{dAdtdE_{\nu}} = \frac{P}{4\pi R^2} \ln \left[\frac{1}{\tau(2-\tau)}\right]$$
$$\downarrow_{\tau \equiv h/R}$$

For
$$h/R = 0.1$$
 \blacktriangleright $E_{\nu} \frac{dF_{\nu_{\alpha}}}{dAdt dE_{\nu}} = 1.66 \frac{P}{4\pi R^2}$





Consider uniform distribution of sources

$$\int_{E_{\gamma}^{\min}} \frac{dF_{\gamma}}{d\Omega dA dt dE_{\gamma}} dE_{\gamma} = \frac{1}{2} \int_{E_{\gamma}^{\min}/2} \sum_{i} e^{-\frac{r_{i}}{\lambda_{\gamma\gamma}}} \frac{dF_{\nu_{\alpha}}}{d\Omega dA dt dE_{\nu}} dE_{\nu}$$

[LAA, Goldberg, Halzen, and Weiler, PLB 600 (2004) 202]

For
$$\frac{E_{\gamma}^{\min}}{\text{GeV}} = 3.30 \times 10^5, \ 7.75 \times 10^5, \ 2.450 \times 10^6$$

CASA-MIA $90\% {
m CL}$ upper limits on integral γ -ray flux are

$$\frac{I_{\gamma}}{\mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1}} < 1.0 \times 10^{-13}, \ 2.6 \times 10^{-14}, \ 2.1 \times 10^{-15}$$

Neglecting photon absorption on CMB

 $\frac{1}{\mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1}} \int_{E_{\gamma}^{\mathrm{min}}} \frac{dF_{\gamma}}{d\Omega dA dt dE_{\gamma}} dE_{\gamma} = 4.2 \times 10^{-14}, \ 1.4 \times 10^{-14}, \ 3.1 \times 10^{-15}$

At 1 PeV absorption on CMB leads to 12% reduction in photon flux

Setting upper limit of integration to

$$\frac{E_{\gamma}^{\max}}{\text{PeV}} = 6, \ 7, \ 8$$

we obtain

 $\int_{E_{\gamma}^{\min}}^{E_{\gamma}^{\max}} \frac{dF_{\gamma}}{d\Omega dA dt dE_{\gamma}} dE_{\gamma} = 2.1 \times 10^{-15}, \ 2.3 \times 10^{-15}, \ 2.4 \times 10^{-15}$

Existing data still allow sufficient plausible wiggle room

for consistency with Galactic origin of IceCube flux even if sources are optically thin

Moreover \blacksquare sources which are optically thin up to $E_{\gamma} \sim 100 {
m ~TeV}$ may not be optically thin at $E_{\gamma} > 100 {
m ~TeV}$

suggesting rigin of IceCube events should be considered with some caution

Take Home Message

> Explored level at which IceCube excess

is consistent with unbroken power law spectrum

- > Value of spectral index of 2.3 is in reasonable agreement with data
- $\succ pp$ collisions appear to be favored mechanism for ν production
- > More data is needed...

MORE DATA IS COMING !!!

