Measurement of the cosmic ray spectrum and large scale anisotropies with the KASCADE-Grande experiment

Andrea Chiavassa Universita` degli Studi di Torino

Cosmic Ray Anisotropy Workshop 2013

Madison, 26-29 September 2013

KASCADE-Grande experiment

KASCADE-Grande Collaboration

Universität Siegen Experimentelle Teilchenphysik P. Buchholz, C.Grupen, D.Kickelbick, S.Over

Universität Wuppertal

Fachbereich Physik D. Fuhrmann, R. Glasstetter, K-H. Kampert

University Trondheim, Norway S. Ostapchenko

> IFSI, INAF and University of Torino

M. Bertaina, E. Cantoni, A. Chiavassa, F. Di Pierro, P.L. Ghia, C. Morello, G. Navarra', G. Trinchero

Universidad Michoacana Morelia, Mexico J.C. Arteaga

Institut für Kernphysik & Institut für Experimentelle Kernphysik KIT - Karlsruhe Institute of Technology

W.D.Apel, K.Bekk, J.Blümer, H.Bozdog, F.Cossavella, K.Daumiller, P.Doll, R.Engel, J.Engler, M.Finger, H.J.Gils, A.Haungs, D.Heck, T.Huege, P.G.Isar, D.Kang, H.O.Klages, K.Link, M.Ludwig, H.-J.Mathes, H.J.Mayer, M.Melissas, J.Milke, S.Nehls, J.Oehlschläger, N.Palmieri, T.Pierog, H.Rebel, M.Roth, H.Schieler, F.Schröder, H.Ulrich, A.Weindl, J.Wochele, M.Wommer

Karlsruher Institut für Technologie

http://www-ik.fzk.de/KASCADE-Grande/

"deceased

KASCADE-Grande detectors & observables

- Shower core and arrival direction
- Shower Size (N_{ch} number of charged particles)
 - Grande array

Grande array \rightarrow cover an area of 0.5 km², detecting EAS with high resolution

Detector	Detected EAS compone nt	Detection Technique	Detect or area (m²)
Grande	Charged particles	Plastic Scintillators	37x10
KASCADE array e/γ	Electrons, γ	Liquid Scintillators	490
KASCADE array µ	Muons (Eµ th =230 MeV)	Plastic Scintillators	622
MTD	Muons (Tracking) (Eµ th =800 MeV)	Streamer Tubes	4x128

• μ Size (E_μ>230 MeV)

•KASCADE array µ detectors

μ density & direction (E_μ>800 MeV)
 •Streamer Tubes

KASCADE-Grande Data taking concluded in Fall 2012.

All the Grande scintillators and PMT have been transferred to the TUNKA-133 experiment

KASCADE-Grande accuracies with a subsample of common events KASCADE + Grande

Apel et al. NIMA 620 (2010) 202-216

All particle energy spectrum

- Combination of N_{ch} and N_{μ}
- Five different angular bins

$$k = \frac{\log_{10}(N_{ch} / N_{\mu}) - \log_{10}(N_{ch} / N_{\mu})_{H}}{\log_{10}(N_{ch} / N_{\mu})_{Fe} - \log_{10}(N_{ch} / N_{\mu})_{H}}$$

$$Log(N_{ch} / N_{\mu})_{H,Fe} = c_{H,Fe} \cdot Log(N_{ch}) + d_{H,Fe}$$

- *k* parameter evaluates chemical composition, used as a weight in the expression correlating N_{ch} and E $\log_{10} E = [a_H + (a_{Fe} - a_H)(k)] \log_{10} N_{ch} + b_H + (b_{Fe} - b_H)(k)$
- Based on QGSJet II-02

Astroparticle Physics 36, (2012) 183

Astroparticle Physics 36, (2012) 183

Comparison of different measurements of the cosmic ray spectrum.

KASCADE-Grande all particle spectrum calibrated using SIBYLL2.1 \rightarrow Advances in Space Research, http://dx.doi.org/10.1016/j.asr.2013.05.008

Zoom in the $10^{16} - 10^{18}$ eV energy range.

Differences in the absolute fluxes can be mainly attributed to the hadronic interaction models used to calibrate the experiments. Spectral features are detected by different experiments operating at different altitudes

Event by event separation in two mass groups by the N_{ch}/N_{μ} ratio

Two different ways of taking into account the EAS attenuation in atmosphere

Y_{CIC} is constant with E (E > full efficiency)

For a specific hadronic interaction model Y_{CIC} increases with primary mass choice of $Y_{CIC} \rightarrow$ choice of a primary mass

For a particular primary element Y_{CIC} increases when calculated by a model generating EAS with higher N_{μ} \rightarrow for the same primary mass the choice of Y_{CIC} is shifted

$$\gamma_1 = -2.76 \quad 0.02$$

 $\gamma_2 = -3.24 \quad 0.05$
 $E_b = 10^{16.92 \quad 0.04} \text{ eV}$

• Energy spectra of the samples obtained by an event selection based on the k parameter

 Spectrum of the electron poor sample → k>(k_C+k_{Si})/2
 → steepening observed with increased significance → 3.5σ

• Spectrum of electron rich events → can be described by a single power law → hints of a hardening above 10¹⁷ eV

Phys. Rev. Lett. 107 (2011) 171104

To enhance possible structures of the electron rich sample $\rightarrow k < (k_C + k_{He})/2$

 Spectra obtained enhancing the electron-rich event selection show a significant hardening above 10¹⁷ eV

Phys. Rev. D 87, 081101(R) (2013)

Search for Large Scale Anisotropies

- East-West method
 - Allows to remove counting rate variations due to atmospheric and instrumental effects
- Data set from December 2003 to October 2011 (10⁷ events)
 - $-\theta < 40^{\circ}$
 - $\log N_{ch} > 5.2$
 - Counting rate distribution in Solar Time
 - Blue line \rightarrow no corrections
 - Red line \rightarrow E-W method

Counting rate distributions (20 minutes bins) in Sidereal and Anti-sidereal times, applying the East-West method.

First harmonic analysis in Sidereal, Solar and Anti-sidereal times

Time	Amplitude (Ax10 ⁻²)	Phase (hours)	Rayleigh Probability
Sidereal	0.28 ± 0.08	15.1±1.1	0.2%
Solar	0.15 ± 0.08	23.9±2.1	17%
Anti-sidereal	0.02 ± 0.08	1.8±14.4	96%

 $\text{Log N}_{ch} > 5.2 \rightarrow \text{median energy E} \sim 3.3 \text{x} 10^{15} \text{ eV}$

The probability that the amplitude of the sidereal time amplitude is due to a background fluctuation is 0.2% (i.e. 3.5σ).

We calculate the 99% C.L. upper limit $\rightarrow A < 0.47 \times 10^{-2}$

Conclusions

- Primary spectrum
 - $10^{16} < E < 10^{18} \text{ eV} \rightarrow$ cannot be described by a singe slope power law.
 - Hardening ~10¹⁶ eV
 - Steepening $\sim 8-9 \times 10^{16} \text{ eV}$
- Heavy elements spectrum
 - Kneelike feature $\sim 8 \times 10^{16} \text{ eV}$
- Light elements spectrum
 - Hardening $\sim 1.2 \times 10^{17} \text{ eV}$
- Large Scale Anisotropy
 - $-A < 4.7 \times 10^{-3}$ (median energy 3.3×10^{15} eV)
 - Phase is consistent with other measurements