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1. Electromagnetic acceleration and transport

Any electromagnetic CR acceleration and transport processes in turbulent
electromagnetic fields ~E = ~0 + δ ~E with no ordered electric field because of
huge cosmic conductivities (exceptions: pulsars, magnetic reconnection)), ~B =
~B0 + δ ~B orders CRs by their rigidity R = p/q

Lorentz force:

d~p

dt
= q

[
δ ~E +

~v × ( ~B0 + δ ~B)

c

]
Acceleration requires turbulent electric fields:

dEkin

dt
=

c2

2Ekin

dp2

dt
=

c2

Ekin
q~p · δ ~E

with Ekin =
√
p2c2 +m2c4 −mc2.

Equal acceleration rates for charged particles at the same magnetic rigidity
R = p/q:

dp2

dt
= 2q~p · δ ~E → dR2

dt
= 2~R · δ ~E

The rigidity ordering successfully explains 100 times more hadrons
than electrons at relativistic energies Ekin � mpc

2 = 1 GeV because
mp = 1836me
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Assume: electrons and protons are accelerated to the same power law spectrum
for the differential number density Ne(p) = N0,ep

−s, Np(p) = N0,pp
−s in

momentum(=rigidity here) above the nonrelativistic kinetic energy T0 = 10
keV, and equal number density

n0 =

∫ ∞
T0

dEkinNe(Ekin) =

∫ ∞
T0

dEkinNp(Ekin)

We find

N(Ekin) = N [p(Ekin)]
dp

dEkin
=
n0

c2
(Ekin +mc2)

[
E2

kin

c2
+ 2Ekinm

]−(s+1)/2

and for the electron-proton ratio in the limit T0 � mec
2

Ne(Ekin)

Np(Ekin)
=

(
me

mp

)(s−1)/2 Ekin +mec
2

Ekin +mpc2

[
Ekin + 2mec

2

Ekin + 2mpc2

]−(s+1)/2

,

which approaches at relativistic energies Ekin � mpc
2 =1 GeV the constant

Ne(Ekin � mpc
2)

Np(Ekin � mpc2)
'
(
me

mp

)(q−1)/2

= 0.011

for s = 2.2. Most electrons sit at T0 ≤ Ekin ≤ mec
2.
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To a large extent, our progress in understanding CR dynamics
in cosmic plasmas depends on our understanding of the magnetic
and electric field fluctuations

Here we address two important issues:

• Nature of cosmic electromagnetic fluctuations in magnetized (e.g. ISM)
and nonmagnetized (intergalactic medium (IGM)) cosmic plasmas

• CR anisotropy and parallel mean free path in magnetized and nonmagne-
tized plasmas
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2. Plasma fluctuations and kinetic description

All plasmas, including unmagnetized and those in thermal equilibrium, have
fluctuations. Because of the large sizes of astrophysical systems compared to
the plasma Debye length, the fluctuations are descibed by real wave vectors (~k)
and complex frequencies ω(~k) = ωR(~k) + ıγ(~k), implying for the space- and
time-dependence of e.g. magnetic fluctuations the superposition of

δ ~B(~x, t) ∝ exp[ı(~k · ~x− ωRt) + γt] (1)

One distinguishes between

• collective modes with a fixed dispersion relation ω = ω(~k), e.g. elec-
tromagnetic waves in vacuum ω2

R = c2k2 and γ = 0,

• non-collective modes with no dispersion relation ω = ω(~k),

and, regarding the real (ωR) and imaginary (γ) part of the frequency,

• weakly damped/amplified wave-like modes with |γ| � |ωR|, e.g.
collective Alfven and magnetosonic waves,

• weakly propagating modes with |ωR| � |γ|, e.g. collective mirror
und firehose fluctuations,

• aperiodic modes with ωR = 0 fluctuate only in space, do not propagate
as ωR = 0, but permanently grow or decrease in time depending on the
sign of γ, e.g. collective Weibel fluctuations. And |δB|2 � |δE|2 !
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Figure 1: Sketch of undamped (γ = 0) plasma wave (ωR 6= 0).
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2.1. Spontaneous emission

Because of their comparably low gas densities, all cosmic fully and partially
ionized non-stellar plasmas are collision-poor, as indicated by the very small
values of the plasma parameter

g = νee/ωp,e = 7.3 · 10−4
(
ne/cm−3

)1/2
(Te/K)−3/2 ≤ O

(
10−10

)
,

given by the ratio of the electron-electron Coulomb collision frequency νee to the
electron plasma frequency ωp,e, characterizing interactions with electromagnetic
fields, so that fully kinetic plasma descriptions are necessary.

Unlike for weakly amplified/damped modes (see Salpeter 1960, Sitenko 1967,
Ichimaru 1973, Kegel 1998), however, for aperiodic and weakly propagating
fluctuations the expected fluctuation level of spontaneously emitted fluctuations
has never been calculated quantitatively. Only recently general expressions for
the electromagnetic fluctuation spectra (electric and magnetic field, charge and
current densities) from uncorrelated plasma particles in unmagnetized plasmas
for arbitrary frequencies have been derived (RS and Yoon 2012, Felten et al.
2013) using the system of the Klimontovich and Maxwell equations, which are
appropriate for fluctuations wavelengths longer than the mean distance between

plasma particles, i.e. k ≤ kmax = 2πn
1/3
e .
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Figure 2: Sketch of weakly amplified (γ > 0, top) and weakly damped (γ < 0, bottom) plasma
wave (ωR � |γ|).
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Figure 3: Sketch of weakly propagating damped (γ < 0, top) and weakly propagating amplified
(γ < 0, bottom) fluctuation (ωR � |γ|).
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Figure 4: Sketch of aperiodic (ωR = 0) growing (γ > 0, top) and aperiodic damped (γ < 0,
bottom)fluctuation.
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In Fig. 5 we show the resulting magnetic fluctuation spectrum for the unmag-
netized, fully-ionized IGM immediately after the reionization onset. The bright
red ribbon in this figure at negative imaginary frequencies γ < 0 clearly in-
dicates the existence of a new collective, transverse, damped aperiodic mode
γ0(k) < 0, resulting from the solution of the dispersion relation ΛT (k, γ0) = 0.
The highest fluctuation intensities occur near this collective mode.

Figure 5: Contour plot of the spontaneously emitted aperiodic magnetic
field fluctuation spectrum in the thermal nonrelativistic electron-
proton IGM plasma distribution in units of kBTe/(2π

3ωp,e). Equal
electron and proton temperatures (Ti = Te = 104 K) are adopted.
The colour scale is logarithmic in powers of e. From Schlickeiser
and Felten (2013)
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By integrating over all values of γ, RS and Felten (2013) derived the thermal
wavenumber spectra of spontaneously emitted aperiodic fluctuations shown in
Fig. 6.

Figure 6: Thermal wavenumber spectra in the case of no damping (full
curve) and in the case of viscous damping (dot-dashed curve) cal-
culated for IGM cosmic void parameters T4 = 1 and n−7 = 1.
From Schlickeiser and Felten (2013)
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For the case of competing viscous damping, the wavenumber spectrum at large
turbulence spatial scales rises only linearly < δB2 >eq (κ < κ1) ∝ κ. The
dominant contribution arises from small turbulence scales λ < λ2, correspond-
ing to κ > κ2 = 1. In this wavenumber range the wavenumber spectrum
< δB2 >eq (κ > κ2) ∝ κ−3. Maximum spatial scales of 1015 cm of the
emitted aperiodic fluctuations in cosmic voids are possible.

By integrating over all wavenumbers the total magnetic field strength of spon-
taneously emitted aperiodic fluctuations is

|δB| =
(
< δB2 >

)1/2
= 2305g(nemec

2)1/2 = 1.5 · 10−16n−7T
−3/2
4 G

These guaranteed magnetic fields in the form of randomly distributed fluctu-
ations, produced by the spontaneous emission of the isotropic thermal IGM
or ISM plasma, serve as seed fields for possible amplification by later possible
plasma instabilities from anisotropic plasma particle distribution functions (RS,
Ibscher ans Supsar 2012), MHD instabilities and/or the MHD dynamo process.
Neither the dynamo process nor plasma instabilities generate magnetic fields
without such seed fields.
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3. CR transport theory

Figure 7: Sketch of cosmic ray life. Courtesy R. Wagner.

Fig. 7 sketches the typical life of a cosmic ray particle: after being accelerated
in individual sources such like supernova remnants, active galactic nuclei or
gamma-ray bursts, it stochastically propagates in the partially turbulent mag-
netic field and interacts with the ambient photon and matter fields, generating
nonthermal photon and neutrino radiation. In the case of galactic CRs this takes
about 107 years before detection by near-Earth or ground based detectors.
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3.1. Fokker-Planck transport equation

The Fokker-Planck particle transport equation for the CR particle phase space
density holds if the following seven physical assumptions about the fluctuating
electromagnetic field turbulence are made:

• (1) Gaussian statistics of fluctuations,

• (2) adiabatic approximation,

• (3) homogeneous and quasi-stationary turbulence,

• (4) existence of a small enough finite decorrelation time of second-order
correlation functions,

• (5) random phase (between particles and fluctuations),

• (6) in magnetized systems B0 � δB; in nonmagnetized systems aperiodic
fluctuations δB � δE

• (7) in magnetized systems parallel flows with respect to ~B0.
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3.2. Magnetized systems (ISM)

In a moving medium of arbitrary speed U ‖ ~B0 ‖ ~eZ the Fokker-Planck equation
reads with Γ = [1− (U/c)2]−1/2:

Γ

[
1 +

Uvµ

c2

] [
∂f0

∂t
− 1

v

∂U

∂t
Γ2

(
µp
∂f0

∂p
+ (1− µ2)

∂f0

∂µ

)]
+Γ [U + vµ]

[
∂f0

∂Z
− 1

v

∂U

∂z
Γ2

(
µp
∂f0

∂p
+ (1− µ2)

∂f0

∂µ

)]
+N f0 +Rf0 − S( ~X, p, µ, t) = p−2 ∂

∂xα
p2Dασ

∂f0

∂xσ
(2)

The phase space coordinates have to be taken in the mixed comoving coordinate
system (time and space coordinates ~x in the laboratory (=observer) system
and particle’s momentum coordinates p and µ = p‖/p in the rest frame of
the streaming plasma). In Eq. (2) we use the Einstein sum convention for
indices, and xα ∈ [µ, p,X, Y ] represent the four phase space variables with non-
vanishing stochastic fields δ ~E and δ ~B. Consequently, the term on the right-
hand side represents 16 different Fokker-Planck coefficients: but, depending
on the turbulent fields considered not all of them are non-zero and some are
much larger than others. S( ~X, p, µ, t) represents additional sources and sinks
of particles.
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N f0 (RS and Jenko 2010) represents effects to the mirror force in large scale
inhomogenous magnetic fields:

N f0 =
v(1− µ2)

2

[
1

L3

∂f0

∂µ
+
sign(qa)RL

L2

∂f0

∂X
− sign(qa)RL

L1

∂f0

∂Y

]
=
v(1− µ2)

2

[
1

L3

∂f0

∂µ
+ ∂⊥f0

]
(3)

with

∂⊥f0 = sign(qa)RL

(
1

L2

∂f0

∂X
− 1

L1

∂f0

∂Y

)
= sign(qa)

(
∂RL
∂Y

∂f0

∂X
− ∂RL

∂X

∂f0

∂Y

)
,

where L−1
1 = −∂x lnB0, L

−1
2 = −∂y lnB0, L

−1
3 = −∂z lnB0 denote the large

spatial gradients of the guide magnetic field B0.

Rf0 accounts for continuous (ṗloss) and catastrophic (Tc) momentum loss pro-
cesses of CR particles:

Rf = p−2∂p
[
p2ṗlossf

]
+
f

Tc
(4)
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In a medium at rest the Fokker-Planck transport equation (2) reduces to

∂f0

∂t
+ vµ

∂f0

∂Z
+N f0 +Rf0 − S( ~X, p, µ, t) = p−2 ∂

∂xα
p2Dασ

∂f0

∂xσ
, (5)

3.2.1. Importance of low-frequency MHD waves

Magnetized space plasmas contain low-frequency linear (δB � B0) transverse
MHD waves (such as shear Alfven and magnetosonic plasma waves) with dis-
persion relations ω2

R = V 2
Ak

2
‖ and ω2

R = V 2
Ak

2, respectively. The induction law

then indicates for MHD waves δE = (VA/c)δB � δB

Then a perturbation scheme based on B0 � δB � δE corresponds to the
reduction

< f > ( ~X, p, µ, φ, t)→ f0( ~X, p, µ, t)→ F ( ~X, p, t) (6)

to gyrotropic f0( ~X, p, µ, t) and to isotropic, gyrotropic distributions functions
F ( ~X, p, t), respectively, in excellent agreement with the observed near isotropy
of CRs.
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3.2.2. Order of magnitude estimate of Fokker-Planck coefficients

Before proceeding, we estimate the relative strength of the different Fokker-
Planck coefficients. With ε = VA/v � 1 these scale as

Dµµ (' Dφφ) ' D0 = a1Ωp
δB2

B2
0

� a1Ωp,

Dpp ' D0ε
2p2, DX,Y ' R2

LD0,

Dµp(' Dφp) ' D0εp, DµX ' DφX = RLD0 (7)

Consequently, the associated times scales for pitch-angle scattering (Tµ '
D−1
µµ ), momentum diffusion (Tp ' p2/Dpp) and perpendicular spatial gyro-

center diffusion (TX ' X2/DXX) scale as

Tµ ' Tφ = T0 ' D−1
0 , Tp '

T0

ε2
� T0, TX '

X2

R2
L

T0 � T0 (8)

Therefore, in the presence of low-frequency MHD fluctuations the particles will
relax most quickly on the time scale min[Ω−1

p , T0] to an isotropic, gyrotropic
distribution function, which then on considerably longer time scales TX and Tp
undergoes diffusion in position space and momentum space, respectively.
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3.3. Nonmagnetized systems (IGM)

With the regular force operator

L0 = ∂t + vµ∂z + v
√

1− µ2[cosφ∂x + sinφ∂y], (9)

here the Fokker-Planck equation reads (Krakau and RS 2013)

L0 < f > (t)−Qa(z,X, Y, p, µ, φ, t) = −p−2 ∂

∂yα

[
p2Pασ < f > (t)

]
(10)

with the Fokker-Planck coefficients

Pασ = <
∫
d3k

∫ ∞
0

dτ Cα,σ(τ)eık‖vµτJ0

(
k⊥vτ

√
1− µ2

)
, (11)

where yα ∈ [µ, p, φ] represent the three phase space variables with non-vanishing
stochastic fields δ ~E and δ ~B, and the respective correlation functions of the
stochastic forces

Cα,σ(τ) = Hα(~k, ~p, 0)H∗σ(~k, ~p,−τ) (12)
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For isotropically distributed aperiodic magnetic fluctuations we obtain Pµµ
Pφφ

Pφµ = Pµφ


=

2πq2
a

m2
ac

2γ2

∫ 1

0
dη

∫ ∞
0

dk k2

∫ ∞
0

dt g(k, t) cos (kvµηt) J0

(
kvt
√

(1− µ2)(1− η2)
)

×

(1− µ2)(η2 sin2 φ+ cos2 φ)
µ2η2+(1−η2)[1−µ2 cos2 φ]

1−µ2
(1− η2)µ sinφ cosφ

 (13)

where g(k, t) =< δB2 >k (t) denotes the time-dependent wavenumber cor-
relation spectrum, given by the simultaneous operating spontaneous emission
at the rate pk(t) and collisional damping with the constant Coulomb damping

rate (Huba 2009) Γ = 10−11n−7T
3/2
4 Hz:

d

dt
g(k, t) = pk(t)− Γg(k, t) (14)

Results are extremely sensitive to the adopted collisional damping
process of aperiodic fluctuations!
According to RS and Felten (2013)

pk(t) = p0(k)e−s0(k)t

[
1 +

a2(k)

a0(k)s0(k)
− a2(k)

a0(k)
t

]
(15)



Electromagnetic . . .

Plasma . . .

CR transport theory

Diffusion . . .

Summary and . . .

so that

g(k, t) =
p0

Γ− s0

((
1 +

a2Γ

a0s0(Γ− s0)

)[
e−s0(k)t − e−Γt

]
− a2t

a0
e−s0t

)
(16)

and consequently ∫ ∞
0

dt g(k, t) =
p0(k)

s0(k)Γ
(17)

3.3.1. Upper limit for Fokker-Planck coefficients

We calculate upper limits to the Fokker-Planck coefficients by noting that
J0(Z) ≤ 1 and cos(Z) ≤ 1 for all arguments Z. Then

 Pµµ
Pφφ

Pφµ = Pµφ

 <
4πq2

a

3m2
ac

2γ2

(1− µ2)(1 + 2 cos2 φ)
2+µ2−2µ2 cos2 φ

1−µ2
µ sinφ cosφ

∫ ∞
0

dk
p0(k)k2

s0(k)Γ
(18)

For the remaining integral we obtain

∫ ∞
0

dk
p0(k)k2

s0(k)Γ
= 10.87

(ωp,e
c

)3 mec
2

β
5/2
e Γ

= 1.3·10−26n
3/2
−7 T

−5/4
4

Γ
erg cm−3 Hz−1,

(19)
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so that  Pµµ
Pφφ

Pφµ = Pµφ

 <
Z2Ω2

q

A2

γ2

Γ

(1− µ2)(1 + 2 cos2 φ)
2+µ2−2µ2 cos2 φ

1−µ2
µ sinφ cosφ

 (20)

with the proton quiver frequency (=effective gyrofrequeny)

Ωq = 2.2 · 10−9n
3/4
−7 T

−5/8
4 Hz (21)

For the associated CR hadron parallel mean free path we obtain the lower limit

λ‖,hadron =
v

2Pµµ
> λL‖,hadron = 3.1 · 1016A

2γ2

Z2
T
−1/4
4 n

−1/2
−7 cm (22)

For CR electrons factor

λ‖,electron > λL‖,electron = 3.1 · 1010γ2T
−1/4
4 n

−1/2
−7 cm (23)

The spontaneously emitted aperiodic fluctuations seriously affect
the propagation of CR protons with Lorentz factors below 106 in
the IGM.
Only at proton and electron energies above 1015 eV, the lower
limit of the mean free path is greater than 104 Mpc!
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4. Diffusion approximation and cosmic ray anisotropy

Our earlier qualitative estimate of Fokker-Planck coefficients for energetic par-
ticles with v � VA indicated that the pitch angle Fokker-Planck coefficient
Dµµ is the largest one. We therefore make the basic assumption of diffusion

theory that the gyrotropic particle distribution function f0( ~X, p, µ, t) under the
action of low-frequency magnetohydrodynamic waves adjusts very quickly to a
distribution function through pitch-angle diffusion which is close to the isotropic
distribution in the rest frame of the moving background plasma. Defining the
isotropic part of the phase space density F ( ~X, z, p, t) as the µ-averaged phase
space density

F ( ~X, p, t) ≡ 1

2

∫ 1

−1
dµ f0( ~X, p, µ, t), (24)

we follow the analysis of Jokipii (1966) and Hasselmann and Wibberenz (1968)
to split the total density f0 into the isotropic part F and an anisotropic part g,

f0( ~X, p, µ, t) = F ( ~X, p, t) + g( ~X, p, µ, t) (25)

where because of Eq. (24) ∫ 1

−1
dµ g( ~X, p, µ, t) = 0 (26)
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The diffusion approximation in the weak focusing limit provides three contribu-
tions to the CR anisotropy

g( ~X, p, µ, t) = g1( ~X, p, µ, t) + g2( ~X, p, µ, t) + g3( ~X, p, µ, t) (27)

with the streaming contribution

g1(µ) =
vΓ

4

∂F

∂Z

[∫ 1

−1
dµ

(1− µ)(1− µ2)

Dµµ(µ)
− 2

∫ µ

−1
ds

1− s2

Dµµ(s)

]
, (28)

the Compton-Getting contribution

g2(µ) =
1

2

∂F

∂p

[∫ 1

−1
dµ

(1− µ)Dµp(µ)

Dµµ(µ)
− 2

∫ µ

−1
ds
Dµp(µ)

Dµµ(s)

]
(29)

and the perpendicular contribution

g3(µ) =
v

12
∂⊥F

[
2

∫ µ

−1
ds
s(1− s2)

Dµµ(s)
−
∫ 1

−1
dµ
µ(1− µ)(1− µ2)

Dµµ(µ)

]
(30)

stemming from the gradients of F with respect to Z, p,X, Y , respectively. The
pitch-angle cosine µ = p‖/p is defined with respect to guide magnetic field
direction.
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5. Summary and conclusions

• Understanding cosmic (δB, δE)-fluctuations in magnetized (ISM) and
nonmagnetized (IGM) plasmas is of crucial importance e.g. the role of
collective and noncollective modes and wave-like, weakly-propagating and
aperiodic fluctuations.

• The ordering B0 � δB � δE in magnetized systems, necessary for
explaining the observed nearly isotropic CR momentum distribution func-
tion, is the basis for a perturbation scheme leading to the modified
diffusion-convection CR transport equation and expressions for the CR
anisotropy.

• The nonmagnetized IGM medium containes aperiodic magnetic fluctua-
tions which are spontaneously emitted by the fully-ionized thermal electron-

proton IGM plasma at a level of |δB| = 1.5 · 10−16n−7T
−3/2
4 G.

• The spontaneously emitted fluctuations affect the propagation of CR pro-
tons and electrons in the IGM at energies below 1015 eV.
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