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0. The Pierre Auger Observatory
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1. First Harmonic Analyses in RA
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exposure xrðaÞ will be also useful, defined as xrðaÞ ¼ xðaÞ=!, with
! the total exposure divided by 2p.

In contrast to large scale anisotropy searches, point-like source
searches can be carried out by overcoming the explicit estimation
of the F function through the use of the shuffling method [5]. This
method only makes use of the observed data set for determining
the number of background events in any direction of the sky,
through the generation of simulation data sets in which the actual
event times are randomly associated with the actual local angles.
In this way, the counting rate variations are naturally accounted
for in each simulation data set, because all background events have
the same time distribution as real events. In addition, preserving
the local angle distribution as observed in the actual data set guar-
antees a proper modelling of the detection efficiency in a total
empirical manner. However, since events from eventual excesses
are used to estimate the background level, the background esti-
mate is necessarily overestimated compared to the true back-
ground [5,6]. While this effect is negligible when searching for
point sources, it is expected to be important when searching for
diffuse excesses and in particular for large scale patterns [7,8].

This paper is dedicated to explore in a comprehensive way the
performances of the shuffling method when searching for large
scale anisotropies in right ascension. Compared to previous stud-
ies, a new interpretation of the directional exposure function as
estimated when applying the shuffling method is given, together
with a complete procedure for interpreting the derived anisotropy
amplitudes and for converting them into the corresponding anisot-
ropy components in the equatorial plane. To this aim, the general
formalism of harmonic analysis is first presented in Section 2, with
a special attention given to the recovering of the harmonic coeffi-
cients in the case of large variations of the directional exposure of
the experiment in right ascension. The principle of the shuffling
technique and its application to large scale anisotropy searches
are then presented in Section 3. It is shown that some anisotropy
can be recovered while properly accounting for any spurious effect
of experimental origin. The performances of this technique are gi-
ven in Section 4 before to conclude in Section 5.

2. Harmonic analysis in right ascension

Harmonic analysis of the right ascension distribution of cosmic
rays in different energy ranges is a powerful tool for picking up and
for characterising any modulation in this coordinate. Any angular
distribution, U(a), can be decomposed in terms of a harmonic
expansion:

UðaÞ ¼ a0 þ
X

n>0

acn cosnaþ
X

n>0

asn sinna: ð3Þ

The customary recipe to extract each harmonic coefficient makes
use of the orthogonality of the trigonometric functions:

a0 ¼ 1
2p

Z 2p

0
daUðaÞ;

acn ¼ 1
p

Z 2p

0
daUðaÞ cosna;

asn ¼ 1
p

Z 2p

0
daUðaÞ sinna: ð4Þ

In this section, we remind how this standard formalism can be ap-
plied to any set of arrival directions fa1; . . . ;aNg16i6N in the case of a
purely uniform or a slightly non-uniform directional exposure, and
present how to proceed in the case of a highly non-uniform direc-
tional exposure. Hereafter, we use an over-line to indicate the esti-
mator of any quantity.

2.1. Uniform directional exposure

In the case of a purely uniform directional exposure, the Ray-
leigh formalism [1] directly provides the amplitude of the different
harmonics, the corresponding phase (i.e. right ascension of the
maximum of intensity), and the probability of detecting a signal
due to fluctuations of an isotropic distribution with an amplitude
equal or larger than the observed one. The observed arrival direc-
tion distribution, UðaÞ, is here modelled as a sum of Dirac functions
over the circle, UðaÞ ¼

P
idða;aiÞ, so that integrations in Eq. (4) re-

duce to discrete sums:

acn ¼ 2
N

X

16i6N

cosnai;

asn ¼ 2
N

X

16i6N

sinnai: ð5Þ

Here, the re-calibrated harmonic coefficients acn % acn=a0 and
asn % asn=a0 are directly considered, as it is traditionally the case in
measuring relative anisotropies.

The statistical properties of the estimators facn; asng can be de-
rived from the Poissonian nature of the sampling of N points over
the circle distributed according to the underlying angular distribu-
tion U(a). From Poisson statistics indeed, the first and second mo-
ments of UðaÞ averaged over a large number of realisations of N
events read:

UðaÞ
! "

¼ !UðaÞ;

UðaÞUða0Þ
! "

¼ !2UðaÞUða0Þ þ !UðaÞdða;a0Þ: ð6Þ

Propagating these properties into the first and second moments of
the estimators fac

n; a
s
ng leads, on the one hand, to unbiased

estimators:

acn
! "

¼ acn;

asn
! "

¼ asn; ð7Þ

and, on the other hand, to the following covariance matrix:

covðacm; a
c
nÞ ¼

1
!p2a20

Z
daUðaÞ cosma cosna;

covðasm; a
s
nÞ ¼

1
!p2a20

Z
daUðaÞ sinma sinna;

covðacm; a
s
nÞ ¼

1
!p2a20

Z
daUðaÞ cosma sinna: ð8Þ

In case of small anisotropies (i.e. jacn=a0j & 1 and jasn=a0j & 1), and
with N a good estimator of !a0, the previous expressions allow
the derivation of the RMS of the estimators as:

rc
nða

c
nÞ ¼ rs

nða
s
nÞ ¼

2
N

# $0:5

: ð9Þ

For an isotropic realisation, acn and as
n are randomvariableswhose

joint p.d.f., pAcn ;A
s
n
, can be factorised in the limit of large number of

events in terms of two Gaussian distributions whose variances are
thus r2 ¼ 2=N. For any n, the joint p.d.f. of the estimated amplitude,
rn ¼ ðac2

n þ as2
n Þ

1=2, and phase, /n ¼ arctanðasn=acnÞ, is then obtained
through the Jacobian transformation:

pRn ;Un
ðrn;/nÞ ¼

@ðacn; asnÞ
@ðrn;/nÞ

%%%%

%%%%pAc
n ;A

s
n
ðacnðrn;/nÞ; asnðrnÞ;/nÞ

¼ rn
2pr2 expð'r2n=2r2Þ: ð10Þ
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Harmonic expansion of the 
angular distribution in α :

• For a directional 
exposure function ω(α), 
recovering of  the 
Fourier coefficients 
through:

➡ Additional challenge : 
control of the event rate

82 III-2-1, J. DELVAILLE, F. KENDZIORSKI and K. GEEISEN

Channel

Backg'nd

2-3-4

1-2-5

150M

150M/R

600M

Median
Shower

Size

1

2x10*

6x10*

2.7xl03

1.4x10"

7.5xlOB

Solar Wave (Pressure and
Temperature Corrected)

Amplitude

0.30

0.41

0.25

0.47

0.89

2.53

Phase

' 15.2

13.6

19.5

0.8

0.2

2.3

Probability

4x10 -»

0.025

18.4

3.6

8.3

10.6

Sidereal Wave (Corrected by
Antisidereal Wave)

Amplitude

0.02

0.41

0.46

0.59

0.70

3.04

Phase

14.6

13.8

19.8

16,0

13.0

15,3

Probability

97.3

1,6

6.0

7.5

46.0

19.8

^amplitude modulation (no phase modulation)
of the solar harmonics. Proper account was
taken of the consequent increase in the
statistical error of the results.

As for the results themselves, no consistent
or highly significant second harmonics were
found in either solar or sidereal time. The
results for the first harmonics are given in
the following table. "Phase" means time of
the maximum; "probability" means the
probability of an amplitude that large or
larger arising from random deviations, of
magnitude determined by the residual vari-
ance of the data. Amplitude and probability
are given in percent, phase in hours of local
time.

The solar effects are obviously real. Their
variation in amplitude and phase with in-
creasing separation of the counters indicates
clearly that they are a residual temperature
effect of the atmosphere on the EAS.

The sidereal first harmonics are remarka-
bly consistent in phase, and the probability
is rather small that they could be due to
chance, especially the results for showers of
10*<JV<10«.

We have investigated the reality of the
spurious harmonics arising from seasonal
modulation of solar atmospheric effects. Dur-
ing 1958 and 1959, the average annual modul-
ation of the sea-level diurnal temperature
cycle was 64%, creating large spurious tem-
perature cycles in both sidereal and antisi-
dereal time. These waves were mostly but
not entirely accounted for by an amplitude
modulation; some phase modulation had to
be introduced to account for them entirely.
Moreover, the apparent temperature coef-
ficient of EAS underwent substantial annual
variation (perhaps associated with humidity,
or with the varying relation of sea-level to

upper air temperatures). If the EAS rates
suffer phase modulation as well as ampli-
tude modulation of a solar variation, the
antisidereal wave bears an unknown phase
relation to the spurious sidereal wave, and
corrections such as we have applied are
inaccurate. Error in the correction is also
introduced by inaccuracy in the phase of the
solar wave. We estimate that on these ac-
counts, a residual spurious amplitude of a
few tenths of a percent could arise in sidereal
time. Therefore we regard our results in
the above table as not constituting strong
evidence of a real asymmetry in the primary
cosmic rays.

One must still account for a remarkable
consistency in phase among measurements of
primary asymmetry by many different ex-

Experimental Phases
o
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Radial Distance = Ratio of Amplitude
to Random Walk.

Open Circles = Background Measurements
at arbitrary Radio!

Distance,

Fig. 11.

 (updated at last ICRC)



Weather Effects and Large-Scale Analyses
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➡ Astropart. Phys. 32 (2009) 89

• Changes of atmospheric conditions are known to influence the lateral extension of 
the showers ⇒ Modulations of the event rate vs time

• Above full efficiency, corrections of the energy estimator to (ρ,P) reference 
values allow us to remove modulations of experimental origin 
• But, amplification of the effects below full efficiency :

➡ Below full efficiency, use of the E/W method designed to subtract automatically 
spurious effects (though with reduced sensitivity) [ApJ 738 67 (2011)]



Spectral Analysis above 1 EeV
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 Spurious sideband effect is proportional

   to the solar amplitude   

Good control of the exposure and 

the weather effects above 1EeV

4

 no correction: ~4%

 with energy correction: ~3%

 add exposure correction : ~1%

Close to the 

statistical noise

H. Lyberis, for the P. Auger Collaboration
First harmonic analysis

OBSERVATORY Analysis at the solar frequency above 1EeV

 The decoupling between frequencies 

    is now observable after 7 yrs.
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• Decoupling between 
frequencies clearly 
observed 

• Amplitudes of random 
frequencies within noise

• Spurious sideband effect 
proportional to the solar 
amplitude: important to 
correct this frequency



Amplitude of the First Harmonic
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Phase vs Amplitude

Pure isotropy
Almost isotropy

(signal size = mean noise)

GAP 2010-057

Sensitivity to large scale anisotropies :
phase versus amplitude measurements

Raffaella Bonino1, Olivier Deligny2, Haris Lyberis2
1 IFSI-INFN, University of Torino, 2 CNRS/IN2P3 - IPN Orsay

I. PHASE AND AMPLITUDE P.D.F.

First harmonic analysis of arrival directions consists in estimating the amplitude and the phase of any (first har-
monic) genuine modulation. The first setp is to estimate x and y through :

x =
2

N

N
∑

i=1

cosαi, y =
2

N

N
∑

i=1

sinαi. (1)

From x and y, estimates r and φ are then deduced through r =
√

x2 + y2 and φ = arctan (y/x). The statistical
properties of r were shown to follow a Rayleigh distribution in case of isotropy, while φ follows a uniform distribution [1].

In case of an underlying genuine signal with amplitude s and phase φ0, as discussed the 2nd alternative of Linsley [1],
the joint p.d.f. pR,Φ(r,φ) of the couple of random variables (R, Φ) is obtained from the change of variables :

pR,Φ(r,φ) = rpX,Y (r cosφ − s cosφ0, r sinφ − s sinφ0). (2)

X and Y may be considered as independent normal variables centered in (x0 = s cosφ0, y0 = s sinφ0) with σ2 = 2/N
as soon as the number of events N is large enough (in practice, a few tens of events is sufficient). The p.d.f. of the
amplitude pR(r) and of the phase pΦ(φ) are thus simply obtained by integrating over φ and r respectively :

pR(r) =
r

σ2
exp

(

−
r2 + s2

2σ2

)

I0

(

rs

σ2

)

, (3)

pΦ(φ) =
1

2π
exp

(

−
s2

2σ2

)

+
s cos (φ − φ0)

2
√

2πσ

(

1 + erf

(

s cos (φ − φ0)√
2σ

))

exp

(

−
s2 sin2 (φ − φ0)

2σ2

)

. (4)

Examples of pR functions are shown in Fig.1-left for N = 30, 000 events, and s = 0 (in blue) and s = 1% (in red). In
such case, the background noise at the level of

√

π/N # 1% dilutes the genuine signal, and only positive fluctuations
may help to detect a significant signal. Meanwhile, using the exactly same parameters, the distributions of the phases
for both cases are shown in Fig.1-right. The p.d.f. in presence of a genuine signal is already almost Gaussian with a
variance (σ/s)2.

Amplitude
0 0.01 0.02 0.03 0.04 0.05

p
.d
.f
.

0

20

40

60

80

100
s=0
s=1%

]°[!
-150 -100 -50 0 50 100 150

p
.d
.f
.

0

0.2

0.4

0.6

s=0
s=1%

FIG. 1: Left: p.d.f. of the first harmonic amplitude for a set of 30,000 events, without any genuine signal (s = 0) and in case
of a genuine signal s = 1%. Right: p.d.f. of the first harmonic phase ψ = φ−φ0 for a set of 30,000 events, without any genuine
signal (s = 0) and in case of a genuine signal s = 1%.
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Phase vs Amplitude : Detection Power
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FIG. 3: Power of the tests on amplitudes (in blue) and on phases (in red) as a function of the number of bins Nb entering in
each test, in case of a genuine signal s = 1% and with N = 30, 000 events in each bin.

Without any prior knowledge of the expected amplitudes s, the inputs given to the L1 function are the measurements
performed in each energy interval. By generating bins of N = 30, 000 events drawn from an isotropic distribution
and by calculating the empirical mean phase to build L1, the distribution of the variable −2 ln (λ) - centered on
〈−2 ln (λ)〉 and scaled by σ−2 ln (λ) - is shown in Fig. 2 for different number of bins Nb entering in the likelihood ratio
test. The null and alternative hypotheses belonging to separate families of hypotheses1, the asymptotic behaviour of
−2 ln (λ) is expected to be Gaussian. This is indeed the case as soon as Nb $ 100. Both 〈−2 ln (λ)〉 and σ−2 ln (λ)

may be calculated analytically, but we do not reproduce this calculation as it is irrelevant to deal with the asymptotic
behaviour (large Nb) in realistic cases. In practice, we are thus left to generate by Monte-Carlo, case by case, the
distribution of −2 ln (λ) considering the null hypothesis as true. The probability for accepting or rejecting the null
hypothesis is thus calculated by integrating the distribution of −2 ln (λ) above the value found in the data.

III. COMPARISON OF THE POWER OF THE TESTS

An alignment of phases in different adjacent bins ordered in energies is, from Fig.1, expected to occur earlier than
the detection of a significant amplitude. This was pointed out in past [2, 3], and we reproduce below an argument
given by Linsley [2]:

Linsley has given a useful example of the behaviour of amplitude and phase estimates in different experiments. If
the number of events available in an experiment is such that the RMS value of r is equal to the true value of s, then
in a sequence of experiments r will only be significant (say p<1%) in one experiment out of ten whereas the phase will
be within 50 degrees of the true phase in two experiments out of three.

By taking independent bins of N=30,000 events and by injecting in each of them a genuine signal s = 1%, we plot
in Fig.3 the power of the two different tests as a function of the number of bins analysed (the threshold of the test
is fixed here at 1%). Clearly, the consistency of the phase measurements leads to a better power (by a factor greater
than 2).

1 s being fixed (s > 0), pΦ cannot be reduced to piso by fitting only φ0.

5

Toy Model

In this particular case (signal ~ bkg noise)

Test on the amplitude for Nb bins

Toy model : N = 30,000 evts in each bin

True signal of 1%

Variation of the number of bins

Probability to accept isotropy

Isotropy :

follows law

Test on the phase for Nb bins

LL ratio method:

pdf have to be computed

➡ Phase test ≈2.5 times 
more efficient 

➡ A consistency of the 
phase measurement in 
adjacent energy intervals 
is thus expected with 
lower statistics than 
that required for the 
amplitude to significantly 
stand out from the 
background noise
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2. Spherical Harmonic Analyses in RA/DEC

• Estimation possible only by 
assuming an upper bound L to the 
expansion in spherical harmonics

• Resolution degraded in proportion 
to exp(L) !

Measuring Large-Scale Anisotropy of Cosmic Rays above 1019 eV

33RD INTERNATIONAL COSMIC RAY CONFERENCE, RIO DE JANEIRO 2013
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Figure 1: Total directional exposure above 1019 eV as obtained
by summing the nominal individual ones of the Telescope Array
and the Pierre Auger Observatory, as a function of the declina-
tion.

ascension #) since this is the most natural one tied to the
Earth to describe the directional exposure of any experi-
ment. The random sample {n1, ...,nN} results from a Pois-
son process whose average is the flux of cosmic rays$(n)
coupled to the directional exposure"(n) of the considered
experiment :

〈

dN(n)

d%

〉

= "(n)$(n). (1)

As any angular distribution on the unit sphere, the flux
of cosmic rays $(n) can be decomposed in terms of a
multipolar expansion onto the spherical harmonicsY!m(n) :

$(n) = &
!≥0

!

&
m=−!

a!mY!m(n). (2)

Any anisotropy fingerprint is encoded in the a!m multi-
poles. Non-zero amplitudes in the ! modes arise from vari-
ations of the flux on an angular scale # 1/! radians.
The directional exposure of each observatory provides

the effective time-integrated collecting area for a flux from
each direction of the sky. In principle, the combined direc-
tional exposure of the two experiments should be simply
the sum of the individual ones. However, individual expo-
sures have here to be re-weighted by some empirical factor
b due to the unavoidable uncertainty in the relative expo-
sures of the experiments. The parameter b can be viewed
as a fudge factor which absorbs any kind of systematic un-
certainties in the relative exposures, whatever the sources
of these uncertainties. This empirical factor is arbitrarily
chosen to re-weight the directional exposure of the Pierre
Auger Observatory relative to the one of the Telescope Ar-
ray :

"(n;b) = "TA(n)+b"Auger(n). (3)

Dead times of detectors modulate the directional expo-
sure of each experiment in sidereal time and therefore in
right ascension. However, once averaged over several years
of data taking, the relative modulations of both "TA and
"Auger in right ascension turn out to be not larger than few
thousandths, yielding to non-uniformities in the observed
angular distribution at the corresponding level. Given that
the limited statistics currently available above 1019 eV can-
not allow an estimation of each a!m coefficient with a preci-
sion better than a few percent, the non-uniformities of "TA
and "Auger in right ascension can be neglected so that both

functions are considered to depend only on the declination
hereafter. On the other hand, since the high energy thresh-
old guarantees that both experiments are fully efficient in
their respective zenithal range [0− 'max], the dependence
on declination is purely geometric [3] :

"i(n) = Ai

(

cos(i cos! sin#m+#m sin(i sin!

)

, (4)

where (i is the latitude of the considered experiment, the
parameter #m is given by

#m =







0 if ) > 1,
* if ) < −1,
arccos) otherwise,

(5)

with ) ≡ (cos'max− sin(i sin! )/cos(i cos! , and the nor-
malisation factors Ai are tuned such that the integration
of each "i function over 4* matches the (total) exposure
of the corresponding experiment. For b = 1, the resulting
"(! ) function is shown in figure 1.
In practice, only an estimation b of the factor b can be

obtained, so that only an estimation of the directional expo-

sure "(n) ≡ "(n;b) can be achieved through equation 3.
The procedure used for obtaining b from the joint data set
will be described below. The resulting uncertainties propa-
gate into uncertainties in the measured a!m anisotropy pa-
rameters, in addition to the ones caused by the Poisson na-
ture of the sampling process when the function" is known
exactly.
With full-sky but non-uniform coverage, the custom-

ary recipe for decoupling directional exposure effects from
anisotropy ones consists in weighting the observed angular
distribution by the inverse of the relative directional expo-
sure function :

dÑ(n)

d%
=

1

"r(n)

dN(n)

d%
. (6)

The relative directional exposure is the dimensionless func-
tion normalized to unity at its maximum. When the func-
tion " (or "r) is known from a single experiment, the av-
eraged angular distribution

〈

dÑ/d%
〉

is, from equation 1,
identified with the flux of cosmic rays$(n) times the total
exposure of the experiment. Due to the finite resolution to
estimate b, the relationship between

〈

dÑ/d%
〉

and$(n) is
here not any longer so straightforward :

〈

dÑ(n)

d%

〉

=

〈

1

"r(n)

〉

"(n)$(n). (7)

However, for an unbiased estimator of b with a resolution
better than# 10% (the actual resolution on bwill be shown
hereafter to be of the order of # 3.5%), the relative differ-
ences between 〈1/"r(n)〉 and 1/"r(n) are actually smaller
than 10−3 in such a way that

〈

dÑ/d%
〉

can still be identi-
fied to $(n) times the total exposure to a high level. Con-
sequently, the recovered a!m coefficients defined as

a!m =
∫

4*
d%

dÑ(n)

d%
Y!m(n) =

N

&
i=1

Y!m(ni)

"r(ni)
(8)

provide unbiased estimators of the underlying a!m multi-
poles since the relationship 〈a!m〉 = a!m can be established
by propagating equation 7 into 〈a!m〉.

• Any anisotropy fingerprint is encoded 
in the set of spherical harmonics 
coefficients 

• Non-zero   modes arise from variations 
of the flux on an angular scale ~     
radians  

• Dipole vector and quadrupole tensor of 
special interest, but the full set of 
moments is relevant

Measuring Large-Scale Anisotropy of Cosmic Rays above 1019 eV
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Figure 1: Total directional exposure above 1019 eV as obtained
by summing the nominal individual ones of the Telescope Array
and the Pierre Auger Observatory, as a function of the declina-
tion.

ascension #) since this is the most natural one tied to the
Earth to describe the directional exposure of any experi-
ment. The random sample {n1, ...,nN} results from a Pois-
son process whose average is the flux of cosmic rays$(n)
coupled to the directional exposure"(n) of the considered
experiment :

〈

dN(n)

d%

〉

= "(n)$(n). (1)

As any angular distribution on the unit sphere, the flux
of cosmic rays $(n) can be decomposed in terms of a
multipolar expansion onto the spherical harmonicsY!m(n) :

$(n) = &
!≥0

!

&
m=−!

a!mY!m(n). (2)

Any anisotropy fingerprint is encoded in the a!m multi-
poles. Non-zero amplitudes in the ! modes arise from vari-
ations of the flux on an angular scale # 1/! radians.
The directional exposure of each observatory provides

the effective time-integrated collecting area for a flux from
each direction of the sky. In principle, the combined direc-
tional exposure of the two experiments should be simply
the sum of the individual ones. However, individual expo-
sures have here to be re-weighted by some empirical factor
b due to the unavoidable uncertainty in the relative expo-
sures of the experiments. The parameter b can be viewed
as a fudge factor which absorbs any kind of systematic un-
certainties in the relative exposures, whatever the sources
of these uncertainties. This empirical factor is arbitrarily
chosen to re-weight the directional exposure of the Pierre
Auger Observatory relative to the one of the Telescope Ar-
ray :

"(n;b) = "TA(n)+b"Auger(n). (3)

Dead times of detectors modulate the directional expo-
sure of each experiment in sidereal time and therefore in
right ascension. However, once averaged over several years
of data taking, the relative modulations of both "TA and
"Auger in right ascension turn out to be not larger than few
thousandths, yielding to non-uniformities in the observed
angular distribution at the corresponding level. Given that
the limited statistics currently available above 1019 eV can-
not allow an estimation of each a!m coefficient with a preci-
sion better than a few percent, the non-uniformities of "TA
and "Auger in right ascension can be neglected so that both

functions are considered to depend only on the declination
hereafter. On the other hand, since the high energy thresh-
old guarantees that both experiments are fully efficient in
their respective zenithal range [0− 'max], the dependence
on declination is purely geometric [3] :

"i(n) = Ai

(

cos(i cos! sin#m+#m sin(i sin!

)

, (4)

where (i is the latitude of the considered experiment, the
parameter #m is given by

#m =







0 if ) > 1,
* if ) < −1,
arccos) otherwise,

(5)

with ) ≡ (cos'max− sin(i sin! )/cos(i cos! , and the nor-
malisation factors Ai are tuned such that the integration
of each "i function over 4* matches the (total) exposure
of the corresponding experiment. For b = 1, the resulting
"(! ) function is shown in figure 1.
In practice, only an estimation b of the factor b can be

obtained, so that only an estimation of the directional expo-

sure "(n) ≡ "(n;b) can be achieved through equation 3.
The procedure used for obtaining b from the joint data set
will be described below. The resulting uncertainties propa-
gate into uncertainties in the measured a!m anisotropy pa-
rameters, in addition to the ones caused by the Poisson na-
ture of the sampling process when the function" is known
exactly.
With full-sky but non-uniform coverage, the custom-

ary recipe for decoupling directional exposure effects from
anisotropy ones consists in weighting the observed angular
distribution by the inverse of the relative directional expo-
sure function :

dÑ(n)

d%
=

1

"r(n)

dN(n)

d%
. (6)

The relative directional exposure is the dimensionless func-
tion normalized to unity at its maximum. When the func-
tion " (or "r) is known from a single experiment, the av-
eraged angular distribution

〈

dÑ/d%
〉

is, from equation 1,
identified with the flux of cosmic rays$(n) times the total
exposure of the experiment. Due to the finite resolution to
estimate b, the relationship between

〈

dÑ/d%
〉

and$(n) is
here not any longer so straightforward :

〈

dÑ(n)

d%

〉

=

〈

1

"r(n)

〉

"(n)$(n). (7)

However, for an unbiased estimator of b with a resolution
better than# 10% (the actual resolution on bwill be shown
hereafter to be of the order of # 3.5%), the relative differ-
ences between 〈1/"r(n)〉 and 1/"r(n) are actually smaller
than 10−3 in such a way that

〈

dÑ/d%
〉

can still be identi-
fied to $(n) times the total exposure to a high level. Con-
sequently, the recovered a!m coefficients defined as

a!m =
∫

4*
d%

dÑ(n)

d%
Y!m(n) =

N

&
i=1

Y!m(ni)

"r(ni)
(8)

provide unbiased estimators of the underlying a!m multi-
poles since the relationship 〈a!m〉 = a!m can be established
by propagating equation 7 into 〈a!m〉.
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Figure 1: Total directional exposure above 1019 eV as obtained
by summing the nominal individual ones of the Telescope Array
and the Pierre Auger Observatory, as a function of the declina-
tion.

ascension #) since this is the most natural one tied to the
Earth to describe the directional exposure of any experi-
ment. The random sample {n1, ...,nN} results from a Pois-
son process whose average is the flux of cosmic rays$(n)
coupled to the directional exposure"(n) of the considered
experiment :
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d%

〉

= "(n)$(n). (1)

As any angular distribution on the unit sphere, the flux
of cosmic rays $(n) can be decomposed in terms of a
multipolar expansion onto the spherical harmonicsY!m(n) :

$(n) = &
!≥0

!

&
m=−!

a!mY!m(n). (2)

Any anisotropy fingerprint is encoded in the a!m multi-
poles. Non-zero amplitudes in the ! modes arise from vari-
ations of the flux on an angular scale # 1/! radians.
The directional exposure of each observatory provides

the effective time-integrated collecting area for a flux from
each direction of the sky. In principle, the combined direc-
tional exposure of the two experiments should be simply
the sum of the individual ones. However, individual expo-
sures have here to be re-weighted by some empirical factor
b due to the unavoidable uncertainty in the relative expo-
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as a fudge factor which absorbs any kind of systematic un-
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chosen to re-weight the directional exposure of the Pierre
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ray :
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sure of each experiment in sidereal time and therefore in
right ascension. However, once averaged over several years
of data taking, the relative modulations of both "TA and
"Auger in right ascension turn out to be not larger than few
thousandths, yielding to non-uniformities in the observed
angular distribution at the corresponding level. Given that
the limited statistics currently available above 1019 eV can-
not allow an estimation of each a!m coefficient with a preci-
sion better than a few percent, the non-uniformities of "TA
and "Auger in right ascension can be neglected so that both

functions are considered to depend only on the declination
hereafter. On the other hand, since the high energy thresh-
old guarantees that both experiments are fully efficient in
their respective zenithal range [0− 'max], the dependence
on declination is purely geometric [3] :
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cos(i cos! sin#m+#m sin(i sin!

)

, (4)

where (i is the latitude of the considered experiment, the
parameter #m is given by
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* if ) < −1,
arccos) otherwise,

(5)

with ) ≡ (cos'max− sin(i sin! )/cos(i cos! , and the nor-
malisation factors Ai are tuned such that the integration
of each "i function over 4* matches the (total) exposure
of the corresponding experiment. For b = 1, the resulting
"(! ) function is shown in figure 1.
In practice, only an estimation b of the factor b can be

obtained, so that only an estimation of the directional expo-

sure "(n) ≡ "(n;b) can be achieved through equation 3.
The procedure used for obtaining b from the joint data set
will be described below. The resulting uncertainties propa-
gate into uncertainties in the measured a!m anisotropy pa-
rameters, in addition to the ones caused by the Poisson na-
ture of the sampling process when the function" is known
exactly.
With full-sky but non-uniform coverage, the custom-

ary recipe for decoupling directional exposure effects from
anisotropy ones consists in weighting the observed angular
distribution by the inverse of the relative directional expo-
sure function :

dÑ(n)
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=

1

"r(n)

dN(n)
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. (6)

The relative directional exposure is the dimensionless func-
tion normalized to unity at its maximum. When the func-
tion " (or "r) is known from a single experiment, the av-
eraged angular distribution

〈

dÑ/d%
〉

is, from equation 1,
identified with the flux of cosmic rays$(n) times the total
exposure of the experiment. Due to the finite resolution to
estimate b, the relationship between
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here not any longer so straightforward :
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=
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〉
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However, for an unbiased estimator of b with a resolution
better than# 10% (the actual resolution on bwill be shown
hereafter to be of the order of # 3.5%), the relative differ-
ences between 〈1/"r(n)〉 and 1/"r(n) are actually smaller
than 10−3 in such a way that
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〉

can still be identi-
fied to $(n) times the total exposure to a high level. Con-
sequently, the recovered a!m coefficients defined as

a!m =
∫
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Y!m(n) =
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Y!m(ni)
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(8)

provide unbiased estimators of the underlying a!m multi-
poles since the relationship 〈a!m〉 = a!m can be established
by propagating equation 7 into 〈a!m〉.

Expansion in Spherical Harmonics Partial-Sky Coverage
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Control of the Event Rate

• Influence of the geomagnetic 
field on the muons of the showers: 
distortions of the density of 
particles in the shower plane

• Dependence on local angles, 
inducing spurious anisotropies in 
declination δ

➡ JCAP 11 (2011) 022

➡ Correction of the energy 
estimator to control the event rate
➡ Essential to search for 
anisotropies in δ !
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Figure 3. Relative changes of ∆ρµ/ρµ in the transverse shower front plane due to the presence of
the geomagnetic field, obtained at zenith angle θ = 60◦ and azimuthal angle aligned along DB+180◦.

by a factor proportional to (δx)2 ∝ B2
T ∝ sin2(û,b), where u and b = B/|B| denote the

unit vectors in the shower direction and the magnetic field direction, respectively. This is
particularly important with regard to the azimuthal behaviour of the effect, as the azimuthal
dependence is contained only in the B2

T(θ,ϕ) term. This dependency is therefore a generic
expectation outlined by this toy model. The model will be verified in section 4 by making
use of complete simulation of showers. On the other hand, the zenith angle dependence relies
on other ingredients that we will probe in an accurate way in section 4, such as the altitude
distribution of the muon production and the muon energy distribution.

3 Observation of geomagnetic effects in the Pierre Auger Observatory data

To illustrate the differences between ρµ and ρµ described in eq. (2.4), the relative changes
∆ρµ/ρµ are shown in figure 3 in the transverse shower front plane by producing muon maps
from simulations at zenith angle θ = 60◦ and azimuthal angle aligned along DB+180◦ in the
presence and in the absence of the geomagnetic field.

A predominant quadrupolar asymmetry at the few percent level is visible, corresponding
to the separation of positive and negative charges in the direction of the Lorentz force.

This quadrupolar asymmetry is expected to induce to some extent a quadrupolar mod-
ulation of the surface detector signals as a function of the polar angle on the ground, defined
here as the angle between the axis given by the shower core and the surface detector, and the
magnetic East ϕE

B = −DB = −2.6◦ (figure 4). The use of this particular angle, instead of the
polar angle ψ which is defined in the shower front plane (see figure 1), allows us to remove
dipolar asymmetries in the surface detector signals, the origin of which is related to the radial
divergence of particles from the shower axis. Such asymmetries cancel out in this analysis,
due to the isotropic distribution of the cosmic rays. To demonstrate the geomagnetic effect,
we produced a realistic Monte-Carlo simulation using 30 000 isotropically distributed showers
(with zenith angles less than 60◦) with random core positions within the array. The injected
primary energies were chosen to be greater than 4 EeV (safely excluding angle dependent
trigger probability) and distributed according to a power law energy spectrum dN/dE ∝ E−γ

with power index γ = 2.7, so that this shower library is as close as possible to the real data
set. To each shower we apply the reconstruction procedure of the surface detector, leading to
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Figure 8. G(θ) = ∆S(1000)/S(1000)/ sin2(û,b) as a function of the zenith angle θ.

4.2 From shower size to energy

At the Pierre Auger Observatory, the shower size S(1000) is converted into energy E using
a two-step procedure [11]. First, the evolution of S(1000) with zenith angle arising from the
attenuation of the shower with increasing atmospheric thickness is quantified by applying the
Constant Intensity Cut (CIC) method that is based on the (at least approximate) isotropy
of incoming cosmic rays. The CIC relates relates S(1000) in vertical and inclined showers
through a line of equal intensity in spectra at different zenith angles. This allows us to correct
the value of S(1000) for attenuation by computing its value had the shower arrived from a
fixed zenith angle, here 38 degrees (corresponding to the median of the angular distribution
of events for energies greater than 3 EeV). This zenith angle independent estimator S38 is
defined as S38 = S(1000)/CIC(θ). The calibration of S38 with energy E is then achieved
using a relation of the form E = ASB

38, where A = 1.49 ± 0.06(stat)±0.12(syst) and B =
1.08 ± 0.01(stat)±0.04(syst) were estimated from the correlation between S38 and E in a
subset of high quality ”hybrid events” measured simultaneously by the surface detector (SD)
and the fluorescence detector (FD) [11]. In such a sample, S38 and E are independently
measured, with S38 from the SD and E from the FD.
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Directional Exposure

➡ Crucial ingredient to 
characterise the angular 
distribution in both α and δ

➡ Many additional effects 
w.r.t. ω(α) only

]° [!
-80 -60 -40 -20 0 20

.y
r]

2
,E

) 
[k

m
!(

"

0

2000

4000

6000

E=1.00 EeV

E=1.25 EeV
E=3.00 EeV

Figure 4: Directional exposure ω(δ,E ) as a function of the declination δ, for four different ener-

gies.

Around 1 EeV, this correction tends to compensate the pure geometrical effect described309

above, and even overcompensates it at lower energies.310

4.5. Spatial extension of the array311

This spatial extension of the SD array is such that the range of latitudes covered by all312

cells reaches ! 0.5◦. This induces a slightly different directional exposure between the313

cells located at the northern part of the array and the ones located at the southern part.314

This spatial extension can be accounted for to calculate the overall directional exposure315

using the cell latitudes #(i )
cell

instead of the mean site one in the transformations from316

local to celestial angles in Eqn. 4.317

4.6. Weather effects below full efficiency318

In the same way as geomagnetic effects, weather effects can also affect the detection319

efficiency for showers with energies below 3 EeV. However, above 1 EeV, we have shown320

in Ref. [19] that the amplitude of the spurious modulation in right ascension induced by321

this effect is small enough to be neglected when performing anisotropy analyses.322

4.7. Some examples of directional exposure323

Accounting for all effects, the final expression to calculate the directional exposure324

is slightly modified with respect to Eqn. 5 :325

ω(δ,E )=
ncell∑

i=1

x(i )
∫24h

0
dα′ a(i )

cell
(θ,ϕ)

[
ε(θ,ϕ,E )+∆εtilt(θ,ϕ,E )

]
, (11)

where both θ and ϕ depend on α′, δ and #(i )
cell

. The resulting dependence on declination326

is displayed in Fig. 4 for three different energies. Down to 1 EeV, the detection efficiency327

at high zenith angles is high enough that the equatorial south pole is visible at any time328

11
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Detection Efficiency

➡ Empirical approach, based on the quasi-invariance of the 
zenithal distribution to large scale anisotropies for ϑ<~60°

We adopt here instead an empirical approach, based on the quasi-invariance of the234

zenithal distribution to large scale anisotropies for zenith angles less than ! 60◦ and for235

any Observatory whose latitude is far from the Earth poles. For full efficiency, the distri-236

bution in zenith angles dN/dθ is proportional to sin(θ)cos(θ) for solid angle and geom-237

etry reasons, so that the distribution in dN/dsin2 (θ) is uniform. Consequently, below238

full efficiency, any significant deviation from a uniform behaviour in the dN/dsin2 (θ)239

distribution provides an empirical measurement of the zenithal dependence of the de-240

tection efficiency. The quasi-invariance of dN/dsin2 (θ) to large scale anisotropies is241

demonstrated in Appendix A.242

Based on this quasi-invariance, the detection efficiency averaged over the azimuth243

can be estimated from :244

〈ε(θ,ϕ,E )〉ϕ =
1

N

dN (sin2 (θ),E )

dsin2 (θ)
, (6)

where the notation 〈·〉ϕ stands for the average over ϕ and the constant N is the num-245

ber of events that would have been observed at energy E in case of full efficiency for an246

energy spectrum dN/dE = 40 (E /EeV)−3.27 km−2yr−1sr−1EeV−1 - as measured between247

1 and 4 EeV [5]. Consequently, for each zenith angle, this empirical measurement of the248

efficiency provides an estimate relative to the overall spectrum of cosmic rays. In partic-249

ular, since it is applied to all events detected at energy E without distinction based on250

the primary mass of cosmic rays, this technique is not sensitive to evaluate the mass de-251

pendence of the detection efficiency. For that reason, the anisotropy searches reported252

in section 5 pertain to the whole population of cosmic rays, whether this population253

consists of a single primary mass or a mixture of several elements.254

Results are shown in Fig. 1 for four different energies3. At 4 EeV, a uniform behaviour255

around 1 is observed, though quite noisy due to the reduced statistics. This uniform256

behaviour is consistent with full efficiency at this energy, as expected. At 2 EeV, a loss257

of efficiency is observed at small zenith angles while the muonic component of showers258

still ensures a recovering of efficiency above! 40◦. At lower energies, a loss of efficiency259

is observed at all zenith angles. In the following, we use parameterisations obtained260

by fitting each distribution with a fourth order polynomial function in sin2 (θ), which is261

sufficient to reproduce the main details as illustrated in Fig. 1.262

4.3. Geomagnetic effects below full efficiency263

In addition to the effects on the energy determination presented in section 3.2, ge-264

omagnetic effects also affect the detection efficiency for showers with energies below265

3 EeV. This is because under any incident angles (θ,ϕ), a shower with an energy E trig-266

gers the SD array with a probability associated to its size which is a function of azimuth267

because of the geomagnetic effects 4 : E × (1+∆(θ,ϕ))B . Above 1 EeV, this effect is actu-268

3To get the detection efficiency at a single energy E , events are actually selected in narrow energy bins
around E . In addition, to account for the energy spectrum in E−3.27 in this energy range, each event is

weighted by a factor E 3.27.
4Here, the shorthand notation ∆(θ,ϕ) stands for g1 cos−g2 (θ)

[
sin2 (û,b)−〈sin2 (û,b)〉ϕ

]
. The energy

E × (1+∆(θ,ϕ))B is actually the one that would have been obtained without correcting for geomagnetic
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APPENDIX A

LARGE-SCALE ANISOTROPIES
IN LOCAL COORDINATES

To study the angular distribution in local coordinates for
different anisotropic angular distributions Φ(α, δ) in celestial
coordinates, we restrict ourselves, without loss of generalities, to
the case of full detection efficiency (ε(θ,ϕ, E) = 1). Then, the
instantaneous arrival direction distribution in local coordinates

reads
d3N

dθdϕdα0
∝ sin θ cos θΦ(θ,ϕ,α0), (A1)

where Φ(θ,ϕ,α0) is the underlying angular distribution of
cosmic rays, expressed in local coordinates. In the case of
isotropy, Φ is constant so that once integrated over ϕ and α0,
the arrival direction distribution is such that dN/d sin2 θ is also
constant. On the other hand, in case of a dipolar distribution, for
instance, Φ is proportional to 1 + rd(θ,ϕ,α0) · n(θ,ϕ), where n
is a unit vector in local coordinates and d is the dipole unit vector
pointing toward (αd , δd ) and expressed in local coordinates by
means of Equation (4). To quantify the distortions induced by a
dipole in the dN/d sin2 θ distribution, we define ∆(dN/d sin2 θ )
such that

∆(dN/d sin2 θ ) = 1
r

(
dNdipole/d sin2 θ − dNiso/d sin2 θ

dNiso/d sin2 θ

)
.

(A2)

Once multiplied by the dipole amplitude r, ∆(dN/d sin2 θ )
directly gives the relative changes in the dN/d sin2 θ distribution
with respect to isotropy. Carrying out integrations over ϕ and
α0 yields to

∆(dN/d sin2 θ ) =
N0,dipole

N0,iso
sin &site sin δd cos θ, (A3)

where both intensity normalizations N0,iso and N0,dipole are tuned
to guarantee the same number of events observed in the cov-
ered region of the sky for each underlying angular distribu-
tion. This result is shown in the left panel of Figure 12, for
the latitude &site = −35.◦2 of the Pierre Auger Observatory
and for different dipole directions. Within the zenithal range
[0◦, 55◦] considered in this article, the relative changes—max-
imal for δd = ±90◦—amount at most to $±15%. So, even
for an amplitude r as large as 10%, the relative changes in
dN/d sin2 θ would be within $±1.5%, variation which—given
the available statistics—is sufficiently low to be considered as
negligible. Besides, the same calculation applied to the case of
a symmetric quadrupolar anisotropy shows that the variation
of ∆(dN/d sin2 θ ) is less than $0.1%, thus being negligible.
Consequently, the distribution in dN/d sin2 θ can be considered
at first order as insensitive to large-scale anisotropies, so that
any significant deviation from a uniform distribution provides
an empirical measurement of the zenithal dependence of the
detection efficiency.

It is worth noting that the azimuthal distribution averaged over
time is, on the other hand, sensitive to large-scale anisotropies.
Repeating the same calculation and integrating now over θ (in
this example between 0◦and 60◦) and α0 yield the ∆(dN/dϕ)
relative changes:

∆(dN/dϕ) =
N0,dipole

N0,iso

sin δd cos &site

24

(
7 tan &site + 3

√
3 sin ϕ

)
.

(A4)

This function is shown in the right panel of Figure 12, for
δd = 90◦ (dashed line) and δd = −90◦ (dotted line). The
amplitude of the dipole wave is now $0.5. Also, the influence
of a quadrupole on ∆(dN/dϕ) is illustrated by the dash-dotted
line (oblate symmetric quadrupole in this example). Since, at
the Earth latitude of the Pierre Auger Observatory, any genuine
large-scale pattern which depends on the declination translates
into azimuthal modulations of the event rate similar to the
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Figure 12. Effect of large-scale anisotropies in local coordinates (left: as a function of sin2 θ ; right: as a function of ϕ) for an observer located at Earth’s latitude
#site = −35.◦2 of the Pierre Auger Observatory.
(A color version of this figure is available in the online journal.)

ones induced by experimental effects, it is thus mandatory to
accurately model the dependence on azimuth of the detection
efficiency for disentangling local from celestial effects.

APPENDIX B

MODULATION OF THE DETECTION EFFICIENCY
INDUCED BY A TILTED ARRAY

To estimate the modulation of the detection efficiency induced
by a tilted array, we consider here that in the absence of tilt, the
corresponding detection efficiency function εnotilt depends only
on the energy and the zenith angle and can be parameterized in
a good approximation as

εnotilt(E, θ) = E3

E3 + E3
0.5(θ )

, (B1)

where E0.5(θ ) is the zenithal-dependent energy at which
εnotilt(E, θ) = 0.5. In case of a tilted array, this parameter de-
pends also on the azimuth angle, which is then the source of the
azimuthal modulation of the detection efficiency. To understand
this, it is useful to consider for any given shower with parame-
ters (E, θ,ϕ) the circle in the shower plane corresponding to the
region in which a signal S larger than some specified threshold
value S0 is expected. Let r0(ζ ) denote the radius of this circle,
ζ being the tilt angle of the SD array. The detection efficiency,
and hence also the parameter E0.5, is ultimately a function of
the average number of detectors contained in the projection of
this circle into the ground, given by

〈ndet〉 (S > S0) ∝ r2
0

h2|n⊥ · n|
, (B2)

where h = 1.5 km is the nominal separation between surface
detectors. The radii r0(ζ ) obtained with the tilted array leading
to the same value of 〈ndet〉 can be related to r0(ζ = 0) through

r2
0 (ζ ) = r2

0 (ζ = 0)
|n⊥ · n|
cos θ

. (B3)

Hence, we can obtain the relation between the energies E0.5 with
tilt (Etilt

0.5) and without tilt (E0.5) by comparing the cosmic-ray
energies required to get the value S0 at radius r0(ζ ) and at radius
r0(ζ = 0). Approximating the lateral distribution function of
the signal near the radius r0 as a power law S(r) ∝ Er−3, we
obtain the following relation:

Etilt
0.5(θ,ϕ) = E0.5(θ )

(
r0(ζ )

r0(ζ = 0)

)3

' E0.5(θ )[1 + ζ tan θ cos (ϕ − ϕ0)]3. (B4)

Then, subtracting εnotilt from εtilt leads to Equation (9).

APPENDIX C

DETERMINATION OF UPPER LIMITS
ON DIPOLE AMPLITUDES

To determine upper limits on the dipole amplitudes, Linsley
described the procedure to follow in the case of first harmonic
analysis in right ascension (Linsley 1975). Here we adapt this
procedure to the case of the dipolar reconstruction adopted in
Section 5.2.

Here, the data set is supposed to have been drawn at random
from an underlying dipolar distribution characterized by d,
whose value is unknown. In the limit of large number of events,
the joint p.d.f. pDX,DY ,DZ

(dx, dy, dz) can be factorized in terms
of three Gaussian distributions N (di − di, σi):

pDX,DY ,DZ
(dx, dy, dz; dx, dy, dz)

= N (dx − dx, σ )N (dy − dy, σ )N (dz − dz, σz). (C1)

The joint p.d.f. pR,∆,A(r, δ,α) expressing the dipole components
in spherical coordinates is then obtained by performing the
Jacobian transformation:

pR,∆,A(r, δ,α; d, δd ,αd ) =
∣∣∣∣
∂(dx, dy, dz)

∂(r, δ,α)

∣∣∣∣pDX,DY ,DZ

× (dx(r, δ,α), dy(r, δ,α), dz(r, δ,α))

= r2 cos δ

(2π )3/2σ 2σz

exp
[

− (r sin δ − d sin δd )2

2σ 2
z

]

× exp
[

− (r cos δ cos α − d cos δd cos αd )2

2σ 2

]

× exp
[

− (r cos δ sin α − d cos δd sin αd )2

2σ 2

]
. (C2)

Each analyzed data set having been selected at random from
an ensemble in which all possible values of d are equally
represented, the various d, δd , and αd combinations have rel-
ative probability pR,∆,A(r, δ,α; d, δd ,αd )/pR,∆,A(r, δ,α; d =
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Figure 1. Detection efficiency averaged over the azimuth as a function of sin2 θ
at different energies, empirically measured from the data.
(A color version of this figure is available in the online journal.)

anisotropies for zenith angles less than !60◦ and for any
Observatory whose latitude is far from the poles of the Earth.
For full efficiency, the distribution in zenith angles dN/dθ
is proportional to sin θ cos θ for solid angle and geometry
reasons, so that the distribution in dN/d sin2 θ is uniform.
Consequently, below full efficiency, any significant deviation
from a uniform behavior in the dN/d sin2 θ distribution provides
an empirical measurement of the zenithal dependence of the
detection efficiency. The quasi-invariance of dN/d sin2 θ to
large-scale anisotropies is demonstrated in Appendix A.

Based on this quasi-invariance, the detection efficiency aver-
aged over the azimuth can be estimated from

〈ε(θ,ϕ, E)〉ϕ = 1
N

dN(sin2 θ, E)
d sin2 θ

, (6)

where the notation 〈·〉ϕ stands for the average over ϕ and the con-
stant N is the number of events that would have been observed
at energy E and for any sin2 θ value in case of full efficiency for
an energy spectrum dN/dE = 40(E/EeV)−3.27 km−2 yr−1 sr−1

EeV−1—as measured between 1 and 4 EeV (The Pierre Auger
Collaboration 2010a). Consequently, for each zenith angle, this
empirical measurement of the efficiency provides an estimate
relative to the overall spectrum of cosmic rays. In particular,
since it is applied to all events detected at energy E without
distinction based on the primary mass of cosmic rays, this tech-
nique does not provide the mass dependence of the detection
efficiency. For that reason, the anisotropy searches reported
in Section 5 pertain to the whole population of cosmic rays,
whether this population consists of a single primary mass or a
mixture of several elements.

Results are shown in Figure 1 for four different energies.104

At 4 EeV, a uniform behavior around 1 is observed, though it is
quite noisy due to the reduced statistics. This uniform behavior
is consistent with full efficiency at this energy, as expected.
Note that some values are greater than 1 for energies close to or
higher than 3 EeV because of the empirical method of measuring
the efficiency relative to the overall spectrum of cosmic rays.
At 2 EeV, a loss of efficiency is observed for vertical showers
due to the attenuation of the electromagnetic component of

104 To get the detection efficiency at a single energy E, events are actually
selected in narrow energy bins around E. In addition, to account for the energy
spectrum in E−3.27 in this energy range, each event is weighted by a factor
E3.27.

the showers. Up to !40◦, the detection efficiency steadily
increases because the projected area of showers at ground gets
larger with zenith angle. Above !40◦, the rapid increase of the
slant depth then makes the attenuation of the electromagnetic
component stronger, but the muonic component of showers
becomes dominant and ensures a high detection efficiency. At
lower energies, the number of muons is, in contrast, too low to
significantly impact the detection efficiency above !40◦–45◦,
so that a clear decrease is observed at high zenith angles. In the
following, we use parameterizations obtained by fitting each
distribution with a fourth-order polynomial function in sin2 θ ,
which is sufficient to reproduce the main details as illustrated in
Figure 1.

4.3. Geomagnetic Effects Below Full Efficiency

In addition to the effects on the energy determination pre-
sented in Section 3.2, geomagnetic effects also affect the de-
tection efficiency for showers with energies below 3 EeV. This
is because under any incident angles (θ,ϕ), a shower with an
energy E triggers the SD array with a probability associated
with its size which is a function of azimuth because of the ge-
omagnetic effects105: E × (1 + ∆(θ,ϕ))B . Above 1 EeV, this
effect is in fact the main source of azimuthal dependence of the
detection efficiency, so that to first order in ∆(θ,ϕ), ε(θ,ϕ, E)
can be estimated as

ε(θ,ϕ, E) = 1
N

dN(sin2 θ, E(1 + ∆(θ,ϕ))B)
d sin2 θ

! 〈ε(θ,ϕ, E)〉ϕ +
BE∆(θ,ϕ)

N
∂ 〈ε(θ,ϕ, E)〉ϕ

∂E
. (7)

The correction to the detection efficiency induced by geo-
magnetic effects, and, in particular, the azimuthal dependence,
is thus straightforward to implement from the knowledge of
〈ε(θ,ϕ, E)〉ϕ . An example of such an azimuthal dependence is
shown in the left panel of Figure 2, for E = 1 EeV and θ = 55◦.
The modulation reflects the one due to the energy determina-
tion: the detection efficiency is lowered in the directions where
the uncorrected energies are underestimated due to geomagnetic
effects, and the efficiency is higher where energies are overes-
timated. The maximal contrast of such azimuthal modulations
is displayed in the right panel as a function of the zenith angle,
for three different energies. At 2 EeV, the amplitude slightly
increases up to !35◦, staying below !0.1%, and then decreases
and even cancels due to the saturation of the detection efficiency.
In contrast, when decreasing in energy, the relative amplitude
largely increases with the zenith angle due to the increase of the
derivative term, reaching !1.7% for θ = 55◦ and E = 1 EeV.

4.4. Tilt of the Array

The altitudes above sea level of the water-Cherenkov detec-
tors are displayed in Figure 3 with color coding. The coordinates
are in a Cartesian system whose origin is defined at the “cen-
ter” of the Observatory site. The Andes ridge building up in the
western and northwestern direction can be seen. A slightly tilted
SD array gives rise to a small azimuthal asymmetry, and conse-
quently slightly modifies the directional exposure with respect

105 Here, the shorthand notation ∆(θ,ϕ) stands for
g1 cos−g2 (θ )[sin2 (û, b) −

〈
sin2 (û, b)

〉
ϕ

]. The energy E × (1 + ∆(θ,ϕ))B is
actually the one that would have been obtained without correcting for
geomagnetic effects.

7

13



Geomagnetic Effects below Full Efficiency

• Same mechanism of modulation of detection efficiency as for 
weather effects
• Dominant source of modulation in azimuth of ε above 1 EeV
• From MC studies :
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Figure 2: Left : Dependence of the detection efficiency on azimuth for θ = 55◦ and E = 1 EeV,

due to geomagnetic effects. Right : Amplitude of the azimuthal modulation of the detection

efficiency induced by geomagnetic effects as a function of the zenith angle.

ally the main source of azimuthal dependence of the detection efficiency, so that at first269

order in ∆(θ,ϕ), ε(θ,ϕ,E ) can be estimated as :270

ε(θ,ϕ,E ) =
1

N

dN (sin2 (θ),E (1+∆(θ,ϕ))B )

dsin2 (θ)

" 〈ε(θ,ϕ,E )〉ϕ+
BE∆(θ,ϕ)

N

∂〈ε(θ,ϕ,E )〉ϕ
∂E

. (7)

The correction to the detection efficiency induced by geomagnetic effects, and in partic-271

ular the azimuthal dependence, is thus straightforward to implement from the knowl-272

edge of 〈ε(θ,ϕ,E )〉ϕ. An example of such an azimuthal dependence is shown in the273

left panel of Fig. 2, for E = 1 EeV and θ = 55◦. The modulation reflects the one of the274

energy determination : the detection efficiency is lowered in the directions where the275

uncorrected energies are under-estimated due to geomagnetic effects, and vice versa.276

The relative amplitude of such azimuthal modulations is displayed in the right panel277

as a function of the zenith angle, for three different energies. At 2 EeV, the amplitude278

slightly increases up to " 35◦, (below " 0.1%), and then decreases and even cancels due279

to the saturation of the detection efficiency. On the contrary, when going down in en-280

ergy, the relative amplitude largely increases with the zenith angle due to the increase of281

the derivative term, amounting to " 1.2% for θ = 55◦ and E = 1 EeV.282

4.4. Tilt of the array283

The altitudes above sea level of the SD stations are displayed in Fig. 3 in color cod-284

ing. The coordinates are in a Cartesian system whose origin is defined at the "center"285

of the Observatory site. The Andes ridge building up in the western and north-western286

direction can be seen. A slightly tilted SD array gives rise to a small azimuthal asymme-287
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Figure 2. Left: dependence of the detection efficiency on azimuth for θ = 55◦ and E = 1 EeV due to geomagnetic effects. Right: maximal contrast of the azimuthal
modulation of the detection efficiency induced by geomagnetic effects as a function of the zenith angle.
(A color version of this figure is available in the online journal.)

Figure 3. Color-coded altitude (a.s.l.) of the water-Cherenkov detectors.
(A color version of this figure is available in the online journal.)

to Equation (5) through small changes of the geometric direc-
tional aperture. This modification is twofold: the tilt changes the
geometric factor (cos θ ) of the projected surface under incidence
angles (θ,ϕ) and also induces a compensating effect below full
efficiency by slightly varying the detection efficiency with the
azimuth angle ϕ.

Denoting n(i)
⊥ the normal vector to each elemental cell, the

geometric directional aperture per cell is no longer simply given
by cos θ but now depends on both θ and ϕ:

a
(i)
cell(θ,ϕ) = 1.95 n · n(i)

⊥ # 1.95

×
[
1 + ζ (i) tan θ cos

(
ϕ − ϕ

(i)
0

)]
cos θ, (8)

where ζ (i) and ϕ
(i)
0 are the zenith and azimuth angles of n(i)

⊥ . It
is actually this latter expression acell which has to be inserted
into Equation (5) to calculate the directional exposure. Overall,
the average tilt of the SD array is ζ eff # 0.◦2, and induces a

dipolar asymmetry in azimuth with a maximum in the downhill
direction ϕeff

0 # 0◦ and with an amplitude increasing with the
zenith angle as #0.3% tan θ .

Below 3 EeV, the tilt of the array induces an additional
variation of the detection efficiency with azimuth. This is
because the effective separation between detectors for a given
zenith angle now depends on the azimuth. Since, for a given
zenith angle, the SD array seen by showers coming from the
uphill direction is denser than that for those coming from
the downhill direction, the detection efficiency is higher in
the uphill direction. Parameterizing the energy dependence of ε
as E3/(E3 + E3

0.5), we show in Appendix B that the change in
the detection efficiency can be estimated as

∆εtilt(θ,ϕ, E) =
E3

(
E3

0.5 − Etilt
0.5

3(θ,ϕ)
)

(
E3 + E3

0.5

)(
E3 + Etilt

0.5
3(θ,ϕ)

) , (9)
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Tilt/Extension of the SD Array

• The tilt induces a change of the projected surface :

• Spatial extension of the array : explicit dependence of ϑ 
and φ on the latitude of the cell

• The tilt induces a variation of the 
detection efficiency below saturation :
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Figure 3. Color-coded altitude (a.s.l.) of the water-Cherenkov detectors.
(A color version of this figure is available in the online journal.)

to Equation (5) through small changes of the geometric direc-
tional aperture. This modification is twofold: the tilt changes the
geometric factor (cos θ ) of the projected surface under incidence
angles (θ,ϕ) and also induces a compensating effect below full
efficiency by slightly varying the detection efficiency with the
azimuth angle ϕ.

Denoting n(i)
⊥ the normal vector to each elemental cell, the

geometric directional aperture per cell is no longer simply given
by cos θ but now depends on both θ and ϕ:

a
(i)
cell(θ,ϕ) = 1.95 n · n(i)

⊥ # 1.95

×
[
1 + ζ (i) tan θ cos

(
ϕ − ϕ

(i)
0

)]
cos θ, (8)

where ζ (i) and ϕ
(i)
0 are the zenith and azimuth angles of n(i)

⊥ . It
is actually this latter expression acell which has to be inserted
into Equation (5) to calculate the directional exposure. Overall,
the average tilt of the SD array is ζ eff # 0.◦2, and induces a

dipolar asymmetry in azimuth with a maximum in the downhill
direction ϕeff

0 # 0◦ and with an amplitude increasing with the
zenith angle as #0.3% tan θ .

Below 3 EeV, the tilt of the array induces an additional
variation of the detection efficiency with azimuth. This is
because the effective separation between detectors for a given
zenith angle now depends on the azimuth. Since, for a given
zenith angle, the SD array seen by showers coming from the
uphill direction is denser than that for those coming from
the downhill direction, the detection efficiency is higher in
the uphill direction. Parameterizing the energy dependence of ε
as E3/(E3 + E3

0.5), we show in Appendix B that the change in
the detection efficiency can be estimated as

∆εtilt(θ,ϕ, E) =
E3

(
E3

0.5 − Etilt
0.5

3(θ,ϕ)
)

(
E3 + E3

0.5

)(
E3 + Etilt
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3(θ,ϕ)

) , (9)
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Figure 3. Color-coded altitude (a.s.l.) of the water-Cherenkov detectors.
(A color version of this figure is available in the online journal.)

to Equation (5) through small changes of the geometric direc-
tional aperture. This modification is twofold: the tilt changes the
geometric factor (cos θ ) of the projected surface under incidence
angles (θ,ϕ) and also induces a compensating effect below full
efficiency by slightly varying the detection efficiency with the
azimuth angle ϕ.

Denoting n(i)
⊥ the normal vector to each elemental cell, the

geometric directional aperture per cell is no longer simply given
by cos θ but now depends on both θ and ϕ:

a
(i)
cell(θ,ϕ) = 1.95 n · n(i)

⊥ # 1.95

×
[
1 + ζ (i) tan θ cos

(
ϕ − ϕ

(i)
0

)]
cos θ, (8)

where ζ (i) and ϕ
(i)
0 are the zenith and azimuth angles of n(i)

⊥ . It
is actually this latter expression acell which has to be inserted
into Equation (5) to calculate the directional exposure. Overall,
the average tilt of the SD array is ζ eff # 0.◦2, and induces a

dipolar asymmetry in azimuth with a maximum in the downhill
direction ϕeff

0 # 0◦ and with an amplitude increasing with the
zenith angle as #0.3% tan θ .

Below 3 EeV, the tilt of the array induces an additional
variation of the detection efficiency with azimuth. This is
because the effective separation between detectors for a given
zenith angle now depends on the azimuth. Since, for a given
zenith angle, the SD array seen by showers coming from the
uphill direction is denser than that for those coming from
the downhill direction, the detection efficiency is higher in
the uphill direction. Parameterizing the energy dependence of ε
as E3/(E3 + E3

0.5), we show in Appendix B that the change in
the detection efficiency can be estimated as

∆εtilt(θ,ϕ, E) =
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to Equation (5) through small changes of the geometric direc-
tional aperture. This modification is twofold: the tilt changes the
geometric factor (cos θ ) of the projected surface under incidence
angles (θ,ϕ) and also induces a compensating effect below full
efficiency by slightly varying the detection efficiency with the
azimuth angle ϕ.

Denoting n(i)
⊥ the normal vector to each elemental cell, the

geometric directional aperture per cell is no longer simply given
by cos θ but now depends on both θ and ϕ:

a
(i)
cell(θ,ϕ) = 1.95 n · n(i)

⊥ # 1.95

×
[
1 + ζ (i) tan θ cos

(
ϕ − ϕ

(i)
0

)]
cos θ, (8)

where ζ (i) and ϕ
(i)
0 are the zenith and azimuth angles of n(i)

⊥ . It
is actually this latter expression acell which has to be inserted
into Equation (5) to calculate the directional exposure. Overall,
the average tilt of the SD array is ζ eff # 0.◦2, and induces a

dipolar asymmetry in azimuth with a maximum in the downhill
direction ϕeff

0 # 0◦ and with an amplitude increasing with the
zenith angle as #0.3% tan θ .

Below 3 EeV, the tilt of the array induces an additional
variation of the detection efficiency with azimuth. This is
because the effective separation between detectors for a given
zenith angle now depends on the azimuth. Since, for a given
zenith angle, the SD array seen by showers coming from the
uphill direction is denser than that for those coming from
the downhill direction, the detection efficiency is higher in
the uphill direction. Parameterizing the energy dependence of ε
as E3/(E3 + E3

0.5), we show in Appendix B that the change in
the detection efficiency can be estimated as

∆εtilt(θ,ϕ, E) =
E3

(
E3

0.5 − Etilt
0.5

3(θ,ϕ)
)

(
E3 + E3

0.5

)(
E3 + Etilt

0.5
3(θ,ϕ)

) , (9)
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Figure 2. Left: dependence of the detection efficiency on azimuth for θ = 55◦ and E = 1 EeV due to geomagnetic effects. Right: maximal contrast of the azimuthal
modulation of the detection efficiency induced by geomagnetic effects as a function of the zenith angle.
(A color version of this figure is available in the online journal.)

Figure 3. Color-coded altitude (a.s.l.) of the water-Cherenkov detectors.
(A color version of this figure is available in the online journal.)

to Equation (5) through small changes of the geometric direc-
tional aperture. This modification is twofold: the tilt changes the
geometric factor (cos θ ) of the projected surface under incidence
angles (θ,ϕ) and also induces a compensating effect below full
efficiency by slightly varying the detection efficiency with the
azimuth angle ϕ.

Denoting n(i)
⊥ the normal vector to each elemental cell, the

geometric directional aperture per cell is no longer simply given
by cos θ but now depends on both θ and ϕ:

a
(i)
cell(θ,ϕ) = 1.95 n · n(i)

⊥ # 1.95

×
[
1 + ζ (i) tan θ cos

(
ϕ − ϕ

(i)
0

)]
cos θ, (8)

where ζ (i) and ϕ
(i)
0 are the zenith and azimuth angles of n(i)

⊥ . It
is actually this latter expression acell which has to be inserted
into Equation (5) to calculate the directional exposure. Overall,
the average tilt of the SD array is ζ eff # 0.◦2, and induces a

dipolar asymmetry in azimuth with a maximum in the downhill
direction ϕeff

0 # 0◦ and with an amplitude increasing with the
zenith angle as #0.3% tan θ .

Below 3 EeV, the tilt of the array induces an additional
variation of the detection efficiency with azimuth. This is
because the effective separation between detectors for a given
zenith angle now depends on the azimuth. Since, for a given
zenith angle, the SD array seen by showers coming from the
uphill direction is denser than that for those coming from
the downhill direction, the detection efficiency is higher in
the uphill direction. Parameterizing the energy dependence of ε
as E3/(E3 + E3

0.5), we show in Appendix B that the change in
the detection efficiency can be estimated as

∆εtilt(θ,ϕ, E) =
E3

(
E3

0.5 − Etilt
0.5

3(θ,ϕ)
)

(
E3 + E3

0.5

)(
E3 + Etilt

0.5
3(θ,ϕ)

) , (9)
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Figure 4. Directional exposure ω(δ, E) as a function of the declination δ for
three different energies.
(A color version of this figure is available in the online journal.)

where Etilt
0.5(θ,ϕ) is related to E0.5 through

Etilt
0.5(θ,ϕ) ! E0.5 ×

[
1 + ζ eff tan θ cos

(
ϕ − ϕeff

0

)]3/2
. (10)

Around 1 EeV, this correction tends to compensate the pure
geometrical effect described above, and even overcompensates
it at lower energies.

4.5. Spatial Extension of the Array

This spatial extension of the SD array is such that the range
of latitudes covered by all cells reaches !0.◦5. This induces a
slightly different directional exposure between the cells located
at the northern part of the array and the ones located at the
southern part. This spatial extension can be accounted for to
calculate the overall directional exposure using the cell latitudes
&

(i)
cell instead of the mean site one in the transformations from

local to celestial angles in Equation (4).

4.6. Weather Effects below Full Efficiency

In the same way as geomagnetic effects, weather effects can
also affect the detection efficiency for showers with energies
below 3 EeV. However, above 1 EeV, we have shown in The
Pierre Auger Collaboration (2011a) that as long as the analysis
covers an integer number of years with almost equal exposure
in every season, the amplitude of the spurious modulation in
right ascension induced by this effect is small enough to be
neglected when performing anisotropy analyses at the present
level of sensitivity.

4.7. Final Estimation of the Directional
Exposure—Examples at Some Energies

Accounting for all effects, the final expression to calculate
the directional exposure is slightly modified with respect to
Equation (5):

ω(δ, E) =
ncell∑

i=1

x(i)
∫ 24h

0
dα′ a(i)

cell(θ,ϕ)

× [ε(θ,ϕ, E) + ∆εtilt(θ,ϕ, E)], (11)

where both θ and ϕ depend on α′, δ, and &
(i)
cell. The resulting

dependence on declination is displayed in Figure 4 for three
different energies. Down to 1 EeV, the detection efficiency at

high zenith angles is high enough that the equatorial south pole
is visible at any time and hence constitutes the direction of
maximum of exposure. For a wide range of declinations between
!−89◦ and !−20◦, the directional exposure is !2500 km2 yr
at 1 EeV, and !3500 km2 yr for any energy above full efficiency.
Then, at higher declinations, it smoothly falls to zero, with no
exposure above !20◦ declination.

The average expected number of events within any solid
angle and any energy range can be recovered by integrating
the directional exposure over the solid angle considered and the
cosmic-ray energy spectrum in the corresponding energy range.
Note that the rapid variation of the exposure close to the South
Pole on an angular scale of the order of the angular resolution has
no influence on the event counting rate, due to the quasi-zero
solid angle in that particular direction. Consequently, though
the exposure around the South Pole could be affected by small
changes of the detection efficiency around θ = 55◦, the results
presented in next sections are on the other hand not affected by
the exact value of the exposure for declinations a few degrees
away from the South Pole.

5. SEARCHES FOR LARGE-SCALE PATTERNS

5.1. Estimates of Spherical Harmonic Coefficients

Any angular distribution over the sphere Φ(n) can be decom-
posed in terms of a multipolar expansion:

Φ(n) =
∑

&!0

&∑

m=−&

a&mY&m(n), (12)

where n denotes a unit vector taken in equatorial coordinates.
The customary recipe to extract each multipolar coefficient
makes use of the completeness relation of spherical harmonics:

a&m =
∫

4π

dΩΦ(n)Y&m(n), (13)

where the integration is over the entire sphere of directions
n. Any anisotropy fingerprint is encoded in the a&m spherical
harmonic coefficients. Variations on an angular scale of Θ
radians contribute amplitude in the & ! 1/Θ modes.

However, in the case of partial sky coverage, the solid angle
in the sky where the exposure is zero makes it impossible to
estimate the multipolar coefficients a&m in this way. This is
because the unseen solid angle prevents one from making use of
the completeness relation of the spherical harmonics (Sommers
2001). Since the observed arrival direction distribution is in this
case the combination of the angular distribution Φ(n) and of the
directional exposure function ω(n), the integration performed
in Equation (13) does not allow any longer the extraction of the
multipolar coefficients of Φ(n), but only the ones of ω(n)Φ(n)
(Billoir & Deligny 2008)106:

b&m =
∫

∆Ω
dΩω(n)Φ(n)Y&m(n)

=
∑

&′!0

&′∑

m′=−&′

a&′m′

∫

∆Ω
dΩω(n)Y&′m′ (n)Y&m(n). (14)

106 To cope with the unseen solid angle, another approach makes use of
orthogonal functions of increasing multipolarity, tailored to the exposure ω
itself (Billoir & Deligny 2008). This method would yield similar accuracies.
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on the sky. This is actually the relevant quantity to perform the analyses presented be-361

low. The solid angle in the sky where the Pierre Auger Observatory has a zero exposure362

(i.e. the northern sky at declination δ > "site + θmax) makes it impossible to estimate363

the multipolar coefficients a"m in the usual way. This is because the unseen solid angle364

prevents one to make use of the completeness relation of the spherical harmonics [28].365

Hence, the integration performed in Eqn. 12 does not allow any longer the extraction of366

the multipolar coefficients of Φ(n), but only the ones of ω̃(∆E ,n) Φ(n) [30] 5:367

b"m =
∫

∆Ω

dΩn ω̃(n,∆E )Φ(n)Y"m (n)

=
∑

"′≥0

"′∑

m′=−"′
a"′m′

∫

∆Ω

dΩn ω̃(n,∆E )Y"′m′(n)Y"m (n). (15)

Formally, the a"m coefficients appear related to the b"m ones through a convolution368

such that b"m =
∑

"′≥0
∑"′

m′=−"′ [K ]"
′m′

"m
a"′m′ . The matrix K , which imprints the interfer-369

ences between modes induced by the non-uniform and partial coverage of the sky, is370

entirely determined by the directional exposure. Note that for a directional exposure in-371

dependent of the right ascension, the coefficients [K ]"
′m′

"m
are proportional to δm′

m - i.e.372

different values of m are not mixed in the matrix.373

Meanwhile, the observation of any set of N arrival directions {n1, ...,nN } recorded374

at local sidereal times {α0
1, ...,α0

N } provides a direct estimation of the b"m coefficients375

through (hereafter, we use an over-line to indicate the estimator of any quantity) :376

b"m =
N∑

k=1

Y"m (nk )

∆Ncell(α
0
k

)
. (16)

The weights ∆N−1
cell

(α0
k

), described in section 4, are introduced to correct for the slightly377

non-uniform directional exposure in right ascension. Then, if the multipolar expan-378

sion of the angular distribution Φ(n) is bounded to "max, the first b"m coefficients with379

"<= "max are related to the non-vanishing a"m by the square matrix K"max
truncated to380

"max. Inverting this truncated matrix allows us to recover the underlying a"m from the381

measured b"m (with "<= "max) :382

a"m =
"max∑

"′=0

"′∑

m′=−"′
[K −1

"max
]"

′m′

"m b"′m′ . (17)

In case of small anisotropies (|a"m |/a00 $ 1), the resolution on each recovered a"m co-383

efficient is proportional to
(
[K −1

"max
]"m
"m

)0.5

[30] :384

σ"m =
(
[K −1

"max
]"m
"m a00

)0.5

. (18)

5To cope with the unseen solid angle, another approach makes use of orthogonal functions of increas-
ing multipolarity, tailored on the exposure ω itself [30]. This method would yield to similar statistical

performances.
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Formally, the a!m coefficients appear related to the
b!m ones through a convolution such that b!m =∑

!′!0

∑!′

m′=−!′[K]!
′m′

!m a!′m′ . The matrix K, which imprints the
interferences between modes induced by the non-uniform and
partial coverage of the sky, is entirely determined by the direc-
tional exposure. The relationship established in Equation (14)
is valid for any exposure function ω(n).

Meanwhile, the observed arrival direction distribution,
dN(n)/dΩ, provides a direct estimation of the b!m coefficients
through (hereafter, we use an overline to indicate the estimator
of any quantity)

b!m =
∫

∆Ω
dΩ

dN (n)
dΩ

Y!m(n), (15)

where the distribution dN (n)/dΩ of any set of N arrival
directions {n1, ..., nN } can be modeled as a sum of Dirac
functions on the sphere. Then, if the multipolar expansion of
the angular distribution Φ(n) is bounded to !max, that is, if the
Φ(n) has no higher moments than !max, the first b!m coefficients
with ! ! !max are related to the non-vanishing a!m by the square
matrix K!max truncated to !max. Inverting this truncated matrix
allows us to recover the underlying a!m from the measured b!m

(with ! ! !max):

a!m =
!max∑

!′=0

!′∑

m′=−!′

[
K−1

!max

]!′m′

!m
b!′m′ . (16)

In the case of small anisotropies (|a!m|/a00 # 1), the res-
olution on each recovered a!m coefficient is proportional to
([K−1

!max
]!m!m)0.5 (Billoir & Deligny 2008):

σ!m =
([

K−1
!max

]!m

!m
a00

)0.5
. (17)

The dependence on !max of the coefficients of K−1
!max

induces an
intrinsic indeterminacy of each recovered coefficient a!m as !max
is increasing. This is nothing else but the mathematical transla-
tion of it being impossible to know the angular distribution of
cosmic rays in the uncovered region of the sky.

Henceforth, we adapt this general formalism to the search
for anisotropies in Auger data in different energy intervals. We
assume that the energy dependence of the angular distribution
of cosmic rays is smooth enough that the multipolar coefficients
can be considered constant for any energy E within a narrow
interval ∆E. The directional exposure is hereafter considered
as independent of the right-ascension, as defined in Section 4.
Within an energy interval ∆E, the expected arrival direction
distribution thus reads

dN(n)
dΩ

∝ ω̃(δ)
∑

!!0

!∑

m=−!

a!mY!m(n), (18)

where ω̃(δ) is the effective directional exposure for the energy
interval ∆E. For convenience, this latter function is normalized
such that

ω̃(δ) =

∫

∆E

dEE−γ ω(δ, E)

max
δ

[ ∫

∆E

dEE−γ ω(δ, E)
] , (19)

with γ the spectral index in the considered energy range. This
dimensionless function provides, for any direction on the sky,
the effective directional exposure in the energy range ∆E at
that direction, relative to the largest directional exposure on
the sky. This is actually the relevant quantity which enters into
Equation (14) for the analyses presented below. Note that for
a directional exposure independent of the right ascension, the
coefficients [K]!

′m′

!m are proportional to δm′

m , i.e., different values
of m are not mixed in the matrix. The observed arrival direction
distribution, dN (n)/dΩ, is here modeled as a sum of Dirac
functions on the sphere weighted by the factor ∆N−1

cell(α
0
k ) for

each event recorded at local sidereal time α0
k , as described in

Section 4.1 to correct for the slightly non-uniform directional
exposure in right ascension. In this way, the integration in
Equation (14) yields to

b!m =
N∑

k=1

Y!m(nk)
∆Ncell

(
α0

k

) . (20)

The multipolar coefficients a!m are then recovered by means
of Equation (16). Given the exposure functions described in
Section 4, the resolution on each recovered coefficient, encoded
in Equation (17), is degraded by a factor larger than 2 each
time !max is increased by 1. This prevents the recovery of
each coefficient with good accuracy as soon as !max " 3,
since, for !max = 3 for instance, our current statistics would
only allow us to probe dipole amplitudes at the 10% level.
Consequently, in the following, we restrict ourselves to reporting
results on individual coefficients obtained when assuming a
dipolar distribution (!max = 1) and a quadrupolar distribution
(!max = 2). Meanwhile, due to the interference between
modes induced by the non-uniform and partial sky coverage,
it is important to stress again that each multipolar coefficient
recovered under the assumption of a particular bound !max might
be biased if the underlying angular distribution of cosmic rays
is not bounded to !max. Given the directional exposure functions
considered in this study, this effect can be important only if
the angular distribution has in fact significant moments of order
!max + 1.

5.2. Searches for Dipolar Patterns

As outlined in the Introduction, a measurable dipole is
regarded as a likely possibility in many scenarios for the origin
of cosmic rays at EeV energies. Assuming that the angular
distribution of cosmic rays is modulated by a pure dipole, the
intensity Φ(n) can be parameterized in any direction n as

Φ(n) = Φ0

4π
(1 + rd · n), (21)

where d denotes the dipole unit vector. The dipole pattern is
here fully characterized by a declination δd , a right ascension
αd , and an amplitude r corresponding to the maximal anisotropy
contrast:

r = Φmax − Φmin

Φmax + Φmin
. (22)

The estimation of these three coefficients is straightforward
from the estimated spherical harmonic coefficients a1m: r =
[3(a2

10 + a2
11 + a2

1−1)]0.5/a00, δ = arcsin (
√

3a10/a00r), and
α = arctan (a1−1/a11). Uncertainties on r , δ, and α are obtained
from the propagation of uncertainties on each recovered a1m

coefficient (cf. Equation (17)). Under an underlying isotropic
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the events with the number of elemental cells at the LST of
each event k, ∆Ncell(α0

k ). Accounting for all these effects,
the resulting dependence of ω on declination is given by

ω(δ ,E) =
ncell

∑
i=1

x(i)
∫ 24h

0
dα ′ a(i)cell(θ(α

′,δ )) ×

[ε(θ ,ϕ,E)+∆εtilt(θ ,ϕ,E)],
(8)

where both θ and ϕ depend on the hour angle α ′ = α −
α0, δ and !(i)cell . For a wide range of declinations be-
tween $ −89◦ and $ −20◦, the directional exposure is
$ 2,990 km2 yr at 1 EeV, and $ 4,186 km2 yr for any en-
ergy above full efficiency. Then, at higher declinations, it
smoothly falls to zero, with no exposure above 20◦ declina-
tion for zenith angles smaller than 55o.

3 Searches for large scale patterns
Any angular distribution over the sphere Φ(n) can be
expanded in terms of spherical harmonics :

Φ(n) = ∑
!≥0

!

∑
m=−!

a!mY!m(n), (9)

where n denotes a unit vector taken in equatorial coordi-
nates. Due to the non-uniform and incomplete coverage
of the sky at the Pierre Auger Observatory, the estimated
coefficients a!m are determined in a two-step procedure.
First, from any event set with arrival directions {n1, ,nN}
recorded at LST {α0

1 , ,α0
N}, the multipolar coefficients of

the angular distribution coupled to the exposure function
are estimated through :

b!m =
N

∑
k=1

Y!m(nk)

∆Ncell(α0
k )

. (10)

∆Ncell(α0
k ) corrects for the slightly non-uniform directional

exposure in right ascension. Then, assuming that the multi-
polar expansion of the angular distribution Φ(n) is bounded
to !max, the first b!m coefficients with !≤ !max are related
to the non-vanishing a!m through :

b!m =
!max

∑
!′=0

!′

∑
m′=−!′

[K]!
′m′
!m a!′m′ , (11)

where the matrix K is entirely determined by the directional
exposure :

[K]!
′m′
!m =

∫

∆Ω
dΩ ω(n) Y!m(n) Y!′m′(n). (12)

Inverting Eqn. 11 allows us to recover the underlying a!m,
with a resolution proportional to ([K−1]!m!m a00)0.5 [17]. As
a consequence of the incomplete coverage of the sky, this
resolution deteriorates by a factor larger than 2 each time
!max is incremented by 1. With our present statistics, this
prevents the recovery of each coefficient with good accuracy
as soon as !max ≥ 3, which is why we restrict ourselves to
dipole and quadrupole searches.

Assuming that the angular distribution of cosmic rays is
modulated by a dipole and a quadrupole, we parameterize
the intensity Φ(n) in any direction as :

Fig. 1: Reconstructed amplitude of the dipole as a function of the
energy. The dotted line stands for the 99% C.L. upper bounds on
the amplitudes that would result from fluctuations of an isotropic
distribution.

°=-90δ

°=-60δ

°=-30δ

°=0δ

°=30δ

°=330α

°=0α

°=30α

°=60α

°=90α

1<E[EeV]<2

2<E[EeV]<4

4<E[EeV]<8

E[EeV]>8

Fig. 2: Reconstructed declination and right-ascension of the
dipole with corresponding uncertainties, as a function of the
energy, in orthographic projection.

Φ(n) = Φ0

4π

(
1+ r d ·n+λ+(q+ ·n)2+

λ0(q0 ·n)2 +λ−(q− ·n)2
)
.

(13)

The dipole pattern is fully characterized by the dipole unit
vector d corresponding to declination δd , right ascension αd
and amplitude r = (Φmax −Φmin)/(Φmax +Φmin). Defin-
ing the amplitude β ≡ (λ+− λ−)/(2+ λ+ + λ−), which
provides a measure of the maximal quadrupolar contrast
in the absence of a dipole, any quadrupolar pattern can be
fully described by two amplitudes (β ,λ+) and three an-
gles : (δ+,α+) which define the orientation of q+ and (α−)
which defines the direction of q− in the orthogonal plane to
q+. The third eigenvector q0 is orthogonal to q+ and q−,
and its corresponding eigenvalue is such as λ++λ−+λ0 = 0.
All these parameters are determined in a straightforward
way from the spherical harmonic coefficients a1m and a2m.

First we consider a case of a pure dipole (λ±,0 = 0).
The reconstructed amplitudes r are shown in Fig. 1 as
a function of the energy. The 99% C.L. upper bounds
on the amplitudes that would result from fluctuations of
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Figure 8. Left: amplitude of the dipole for two energy intervals: 1 < E/(EeV) < 4 and E > 4 EeV. Right: amplitude of the dipole as a function of energy thresholds.
The dotted lines stand for the 99% CL upper bounds on the amplitudes that could result from fluctuations of an isotropic distribution.

three corresponding unit eigenvectors, the intensity can be
parameterized in a more intuitive way as

Φ(n) = Φ0

4π
(1 + rd · n + λ+(q+ · n)2 + λ0(q0 · n)2 + λ−(q− · n)2).

(26)
It is then convenient to define the quadrupole amplitude β as

β ≡ λ+ − λ−

2 + λ+ + λ−
. (27)

In case of a pure quadrupolar distribution (i.e., in the absence of
dipole), β is nothing else but the customary measure of maximal
anisotropy contrast:

r = 0 ⇒ β = λ+ − λ−

2 + λ+ + λ−
= Φmax − Φmin

Φmax + Φmin
. (28)

Hence, any quadrupolar pattern can be fully described by two
amplitudes (β, λ+) and three angles: (δ+,α+) which define the
orientation of q+ and (α−) which defines the direction of q−
in the orthogonal plane to q+. The third eigenvector q0 is
orthogonal to q+ and q−, and its corresponding eigenvalue λ0 is
such that the traceless condition is satisfied: λ+ + λ− + λ0 = 0.
Though the probability density functions of the estimated
quadrupole amplitudes (β, λ+) can be in principle calculated
in the same way as in the case of the estimated dipole amplitude
(r), expressions are much more complicated to obtain even semi-
analytically and we defer hereafter to Monte Carlo simulations
to tabulate the distributions.

The amplitudes r(E), λ+(E), and β(E) are shown in Figure 9
as functions of energy. Dipole amplitudes are compatible with
expectations from isotropy. Compared to the results on the
dipole obtained in previous section for &max = 1, the sensitivity
is now degraded by a factor larger than 2 as expected from the
dependence of the resolution σ&m on &max (cf. Equation (17)).
In the same way as for dipole amplitudes, the 99% CL upper
bounds on the quadrupole amplitudes that could result from
fluctuations of an isotropic distribution are indicated by the
dashed lines. They correspond to the amplitudes λ+,99(E) and
β99(E) such that the probabilities PΛ+ (> λ+,99(E)) and PB(>
β99(E)) arising from statistical fluctuations of isotropy are equal
to 0.01. Here, both distributions PΛ+ and PB are sampled from
Monte Carlo simulations. Throughout the energy scan, there is
no evidence for anisotropy. The largest deviation from isotropic
expectations occurs between 2 and 4 EeV, where the amplitude
λ+ lies just above λ+99.

Table 2
Influence of Shower Size Corrections for Geomagnetic

Effects on the Component of the Dipole in the Equatorial Plane and
on the One Along Earth’s Rotation Axis

∆E runcorr
⊥ r⊥ runcorr

‖ r‖
(EeV) (%) (%) (%) (%)

1–4 0.9 ± 0.3 0.9 ± 0.3 −2.2 ± 0.4 −1.0 ± 0.4
>4 1.8 ± 1.0 2.1 ± 1.0 −4.1 ± 1.7 −3.0 ± 1.7

6. ADDITIONAL CROSS-CHECKS AGAINST
EXPERIMENTAL EFFECTS

6.1. More on the Influence of Shower Size
Corrections for Geomagnetic Effects

Understanding the influence of the shower size corrections
for geomagnetic effects is critical to get unbiased estimates of
anisotropy parameters. Without accounting for these effects,
an increase of the event rate would be observed close to the
equatorial South Pole with respect to expectations for isotropy,
while a decrease would be observed close to the edge of the
directional exposure in the equatorial Northern Hemisphere.
This would result in the observation of a fake dipole. A
convenient way to exhibit this effect is to separate the dipole in
two components : the component of the dipole in the equatorial
plane r⊥, and the component along Earth’s rotation axis, r‖.
While r⊥ is expected to be affected only by time-dependent
effects, r‖ is on the other hand the relevant quantity sensitive to
time-independent effects such as the geomagnetic one.

Estimations of r⊥ and r‖ obtained by accounting or not for
geomagnetic effects are given in Table 2, in two different energy
ranges. These estimations are obtained from the recovered a1m

coefficients: r‖ =
√

3a10/a00, and r⊥ = [3(a2
11 +a2

1−1]0.5/a00. It
can be seen that the main effect of the geomagnetic corrections is
a shift in r‖ of about 1.2%. In the energy range 1 ! E/EeV ! 4,
this shift is significant, r‖ changing from −2.2% to −1.0%
with an uncertainty amounting to 0.4%. Above 4 EeV, the
net correction is of the same order, though the statistical
uncertainties are larger. In contrast, r⊥ remains unchanged in
both cases, as expected.

6.2. Eventual Energy Dependence of the Attenuation Curve

In this section, we study to which extent the procedure used
to obtain the attenuation curve in Section 3.3 might influence
the determination of the anisotropy parameters.
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3. Upper Limits and Consequences
➡ ApJL 762 L13 (2013)
& ApJS 203 34 (2012)

• Numerical integration of trajectories required in this energy 
range

➡ Back tracking of anti-particles with random directions from the 
Earth to outside the Galaxy [Thielheim & Langhoff, J.Phys.A,1,694 (1968)]

• Each particle probes the total luminosity along the path of 
propagation from each direction as seen from the Earth

• For stationary sources emitting equally in all directions, the 
time spent in the source region is proportional to the flux 
detected in that direction

Generic Estimate of Anisotropies from 
EeV-Galactic Stationary Sources
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Upper Limits and Consequences

➡ While other magnetic field models, source distributions and emission 
assumptions must be considered before definitive conclusions can be drawn, 
the example considered here illustrates the potential power of these 
observational limits on the dipole anisotropy to exclude the hypothesis 
that the light component of cosmic rays is of Galactic origin.
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 Direction in right ascension consistent in both hemispheres 

 Goal : anisotropy studies with combined Auger/TA data

 Many advantages with full-sky coverage in addition to the 
increased statistics (no need for an upper bound L)

4. Large-Scale Structure with 
Full-Sky Coverage

TA - UHECR2012

➡ Joint Auger/TA paper in preparation
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• Zenith ranges :[0-55°] for TA, 
[0-60°] for Auger

➡ Zenith ranges + latitudes : 
full-sky coverage achieved 

• Energy threshold : geometric 
directional exposure

Full-Sky Coverage

]° [!
-80 -60 -40 -20 0 20 40 60 80

.y
r]

2
) [

km
!(

"

0

2000

4000

6000

8000

➡ BUT unavoidable uncertainty in the relative exposures of the experiments

b : fudge factor absorbing systematics of any 
origin (relative exposure, energy scale, etc)

Measuring Large-Scale Anisotropy of Cosmic Rays above 1019 eV

33RD INTERNATIONAL COSMIC RAY CONFERENCE, RIO DE JANEIRO 2013
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Figure 1: Total directional exposure above 1019 eV as obtained
by summing the nominal individual ones of the Telescope Array
and the Pierre Auger Observatory, as a function of the declina-
tion.

ascension #) since this is the most natural one tied to the
Earth to describe the directional exposure of any experi-
ment. The random sample {n1, ...,nN} results from a Pois-
son process whose average is the flux of cosmic rays$(n)
coupled to the directional exposure"(n) of the considered
experiment :

〈

dN(n)

d%

〉

= "(n)$(n). (1)

As any angular distribution on the unit sphere, the flux
of cosmic rays $(n) can be decomposed in terms of a
multipolar expansion onto the spherical harmonicsY!m(n) :

$(n) = &
!≥0

!

&
m=−!

a!mY!m(n). (2)

Any anisotropy fingerprint is encoded in the a!m multi-
poles. Non-zero amplitudes in the ! modes arise from vari-
ations of the flux on an angular scale # 1/! radians.
The directional exposure of each observatory provides

the effective time-integrated collecting area for a flux from
each direction of the sky. In principle, the combined direc-
tional exposure of the two experiments should be simply
the sum of the individual ones. However, individual expo-
sures have here to be re-weighted by some empirical factor
b due to the unavoidable uncertainty in the relative expo-
sures of the experiments. The parameter b can be viewed
as a fudge factor which absorbs any kind of systematic un-
certainties in the relative exposures, whatever the sources
of these uncertainties. This empirical factor is arbitrarily
chosen to re-weight the directional exposure of the Pierre
Auger Observatory relative to the one of the Telescope Ar-
ray :

"(n;b) = "TA(n)+b"Auger(n). (3)

Dead times of detectors modulate the directional expo-
sure of each experiment in sidereal time and therefore in
right ascension. However, once averaged over several years
of data taking, the relative modulations of both "TA and
"Auger in right ascension turn out to be not larger than few
thousandths, yielding to non-uniformities in the observed
angular distribution at the corresponding level. Given that
the limited statistics currently available above 1019 eV can-
not allow an estimation of each a!m coefficient with a preci-
sion better than a few percent, the non-uniformities of "TA
and "Auger in right ascension can be neglected so that both

functions are considered to depend only on the declination
hereafter. On the other hand, since the high energy thresh-
old guarantees that both experiments are fully efficient in
their respective zenithal range [0− 'max], the dependence
on declination is purely geometric [3] :

"i(n) = Ai

(

cos(i cos! sin#m+#m sin(i sin!

)

, (4)

where (i is the latitude of the considered experiment, the
parameter #m is given by

#m =







0 if ) > 1,
* if ) < −1,
arccos) otherwise,

(5)

with ) ≡ (cos'max− sin(i sin! )/cos(i cos! , and the nor-
malisation factors Ai are tuned such that the integration
of each "i function over 4* matches the (total) exposure
of the corresponding experiment. For b = 1, the resulting
"(! ) function is shown in figure 1.
In practice, only an estimation b of the factor b can be

obtained, so that only an estimation of the directional expo-

sure "(n) ≡ "(n;b) can be achieved through equation 3.
The procedure used for obtaining b from the joint data set
will be described below. The resulting uncertainties propa-
gate into uncertainties in the measured a!m anisotropy pa-
rameters, in addition to the ones caused by the Poisson na-
ture of the sampling process when the function" is known
exactly.
With full-sky but non-uniform coverage, the custom-

ary recipe for decoupling directional exposure effects from
anisotropy ones consists in weighting the observed angular
distribution by the inverse of the relative directional expo-
sure function :

dÑ(n)

d%
=

1

"r(n)

dN(n)

d%
. (6)

The relative directional exposure is the dimensionless func-
tion normalized to unity at its maximum. When the func-
tion " (or "r) is known from a single experiment, the av-
eraged angular distribution

〈

dÑ/d%
〉

is, from equation 1,
identified with the flux of cosmic rays$(n) times the total
exposure of the experiment. Due to the finite resolution to
estimate b, the relationship between

〈

dÑ/d%
〉

and$(n) is
here not any longer so straightforward :

〈

dÑ(n)

d%

〉

=

〈

1

"r(n)

〉

"(n)$(n). (7)

However, for an unbiased estimator of b with a resolution
better than# 10% (the actual resolution on bwill be shown
hereafter to be of the order of # 3.5%), the relative differ-
ences between 〈1/"r(n)〉 and 1/"r(n) are actually smaller
than 10−3 in such a way that

〈

dÑ/d%
〉

can still be identi-
fied to $(n) times the total exposure to a high level. Con-
sequently, the recovered a!m coefficients defined as

a!m =
∫

4*
d%

dÑ(n)

d%
Y!m(n) =

N

&
i=1

Y!m(ni)

"r(ni)
(8)

provide unbiased estimators of the underlying a!m multi-
poles since the relationship 〈a!m〉 = a!m can be established
by propagating equation 7 into 〈a!m〉.
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Full-Sky Map >10 EeV (60° smoothing)
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Full-Sky Map >10 EeV (30° smoothing)
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S U M MARY

 Amplitudes marginally in agreement with isotropic 
expectations in few energy bins
 Non-random phases over a wide energy range

 Searches in both α and δ now possible

 Constraining upper limits on dipole/quadrupole 
moments

 Searches with full-sky coverage applied to Auger/TA 
data above 10 EeV soon 

 Ongoing, searches in enriched light/heavy samples 
(based on event-by-event Xmax data with FD) below 1 EeV 
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