TEV-BAND COSMIC RAY ANISOTROPY : ANISOTROPIC DIFFUSION

Rahul Kumar

PhD Supervisor: Prof. David Eichler

CRA Workshop 2013, Madison

Propagation of cosmic rays in the Galaxy

Cosmic rays scatter in the turbulent Galactic magnetic field

 Propagation of Cosmic rays in the interstellar medium can be described by diffusion

$$\frac{\partial N}{\partial t} = \nabla D \nabla N + Q(E) \delta(t) \delta(\vec{r} - \vec{r_s})$$

 Stochastic reacceleration, advection, and energy losses are neglected

 Escape from the Galaxy is encapsulated by introducing absorbing boundaries at |z| = H

Anisotropic Diffusion

- A partially ordered Galactic magnetic field (GMF) breaks the isotropy of diffusion
- Rate of diffusion across magnetic field lines is much less compared to diffusion rate along magnetic field
- $\circ \quad D_{\perp}/D_{\parallel} \gtrsim 10^{-2} \text{ for } \quad \delta B/B \simeq 1$
- The ratio is assumed to be independent of energy
- Regular component of the GMF (directed along the spiral arms) is assumed to be toroidal
- A general anisotropic diffusion of the CRs is described by

$$\frac{\partial N}{\partial t} = \frac{\partial}{\rho \partial \rho} \rho D_{\rho} \frac{\partial N}{\partial \rho} + \frac{\partial}{\rho^2 \partial \phi} D_{\phi} \frac{\partial N}{\partial \phi} + \frac{\partial}{\partial z} D_z \frac{\partial N}{\partial z} + Q(E)\delta(t)\delta(\rho - \rho_0)\delta(\phi)\delta(z - z_s)/\rho,$$

Cosmic ray flux from point-like sources

 $N(\rho, \phi, z) = G(z, t)N_0(\rho, \phi, t)$

Mid plane density N₀ can be written as,

$$N_{0}(\rho,\phi,t) = \frac{\Theta(t)}{2\pi D_{\perp} t} \frac{Q(E)}{H} \exp\left(-\frac{\rho^{2} + \rho_{0}^{2}}{4D_{\perp} t}\right) \left[\frac{1}{2}I_{0}\left(\tilde{\rho}\right) + \sum_{n=1}^{\infty} \cos(n\phi)I_{\nu(n)}\left(\tilde{\rho}\right)\right]$$
$$\tilde{\rho} = \rho\rho_{0}/2D_{\perp}t, \quad \nu(n) = n\sqrt{D_{\parallel}/D_{\perp}}$$

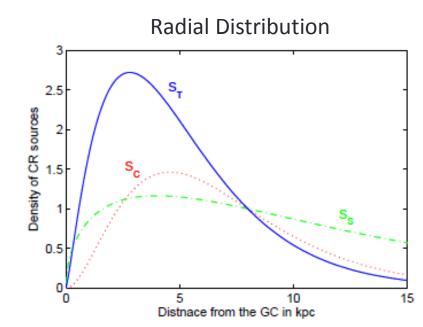
G, after summing over mirror images of Gaussian centered at z_s, can be approximated as

$$G \simeq \frac{1}{\sqrt{2\pi Dt}} \exp\left(-\frac{(z-z_s)^2}{4Dt}\right) (1+\tilde{t})^{1.25} \exp(-(1.5\tilde{t})^{0.97}) \qquad \tilde{t} = 2Dt/H^2$$

- Local CR flux is calculated after summing the contribution of relevant sources
- A Monte Carlo simulation is used to randomly place sources in the Galaxy with a given source distribution and source rate.

Anisotropy

- Anisotropy : $\frac{3D(E)}{c} \frac{\vec{\nabla}N}{N}$
- Anisotropy=Large scale anisotropy due to source inhomogeneity
 + discreteness anisotropy
- H/D_z is determined by B/C ratio
- In-plane diffusion rate is less constrained
- Trotta et al.(2011) reproduced B/C ratio in an isotropic diffusion model with


 $D_0 \simeq (1.2 + 1.3 H) \times 10^{28} \text{ cm}^2 \text{ s}^{-1}$

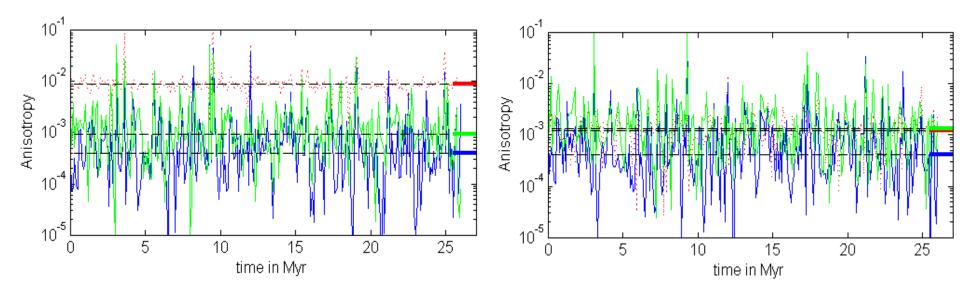
- D(E)~D₀ (E/4 GeV)^{0.3}
- D_z and D_{ϕ} are kept unchanged

Source Distribution

- CR source distribution is generally inferred from the distribution of various proxies, such as pulsars and SNRs
- Proposed distributions vary in their extent of steepness
- Distribution of CR sources along the direction perpendicular to the plane is

P(z)=exp(-|z|/300 pc)

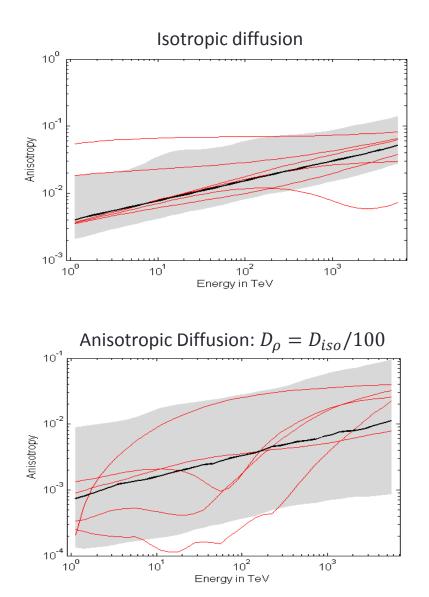
S_T: Pulsars (Trotta et al., 2011)
 S_C: SNRs (Case & Bhattacharya, 1998)
 S_s: Gamma ray Gradient (Strong et al., 2000)

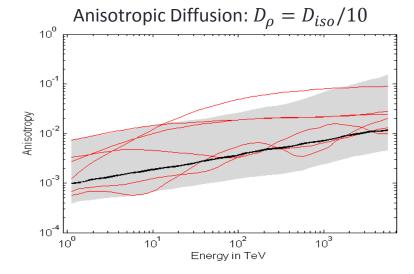

Anisotropy at 20 TeV

Isotropic diffusion

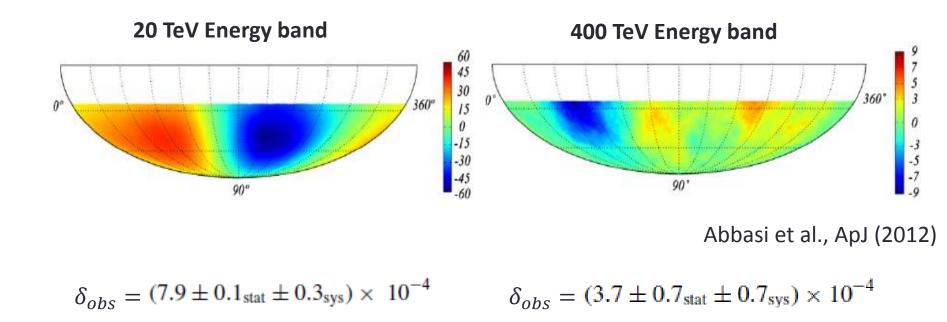
Source rate : 1 per 100 yr H=5 kpc

$$-\delta_{\rm r} - \delta_{\rm z} - \delta_{\varphi}$$


Anisotropic Diffusion: $D_{\rho} = D_{iso}/10$

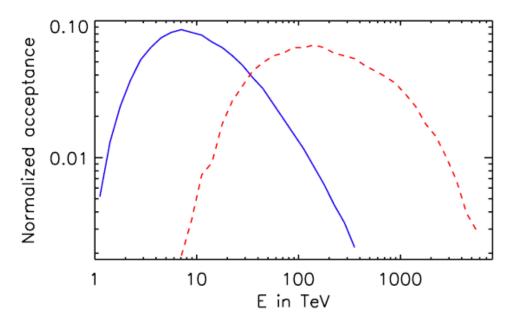


- Radial anisotropy is large and a dominant contributor to total anisotropy for a steep distribution
- Radial anisotropy decrease with decrease in radial diffusion rate
- For pulsar distribution, radial anisotropy becomes comparable to the azimuthal anisotropy for $D_{\rho} = D_{iso}/10$


Anisotropy vs. Energy

- Total anisotropy at all energies goes down as the radial diffusion rate is reduced
- Fluctuation increases with decreasing radial diffusion rate since the total number of contributing sources becomes smaller
- Non-monotonic dependence of anisotropy on energy is due to discreteness of the sources

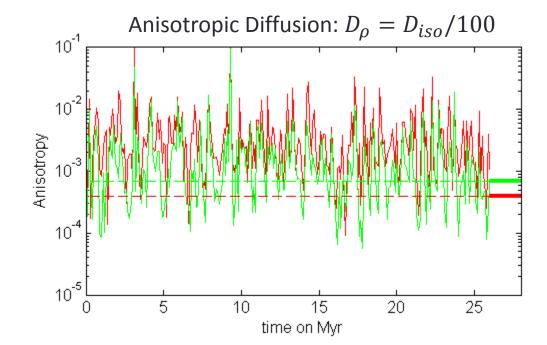
Anisotropy measurement by IceCube



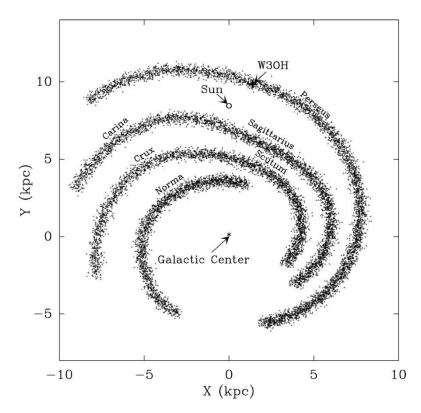
 IceCube reports the sidereal first harmonic in the CR intensity average over declination range -25^o to -72^o

Comparison with IceCube measurements

- Airshowers caused by heavy primaries behave approximately behave like superposition of airshowers produced by individual nucleons
- Heavy nuclei of nuclear change Z and energy E behaves like protons of energy E/Z
- Primaries are assumed to be protons
- Dipole anisotropy is projected at the characteristic declination -45⁰


$$\delta_{\text{proj}}(\theta_c) = \frac{\delta \, \cos \theta_d \, \cos \theta_c}{1 + \delta \, \sin \theta_d \, \sin \theta_c}$$

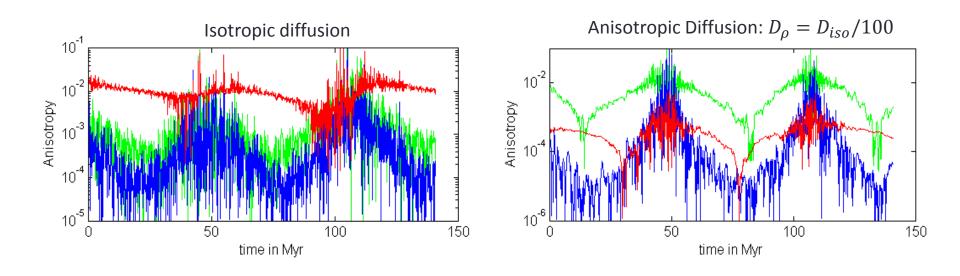
Distribution of the primaries in energy, assuming all primaries are protons


Anisotropy in 20 TeV and 400 TeV energy band

- Anisotropy is below the observed value in 20 and 400 TeV band for about 5 % of time
- Pohl & Eichler (2013) model the propagation with isotropic diffusion, conclude a need for a flat distribution and get to meet the observation about 5-10% of time

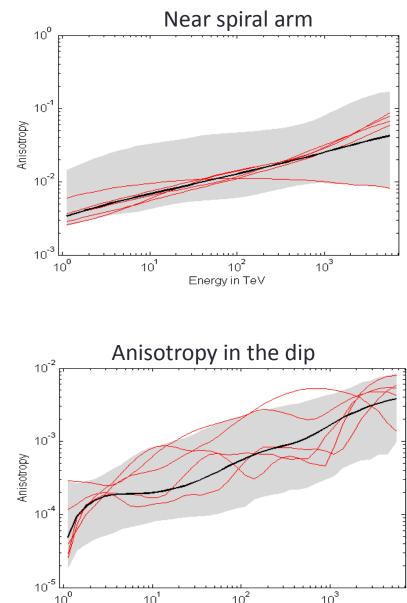
Spiral Arms

- Star formation in the Galaxy takes place in spiral arms
- We lie in Local spur, between two spiral arms Sagittarius and Perseus
- Sun completes one revolution in about 280 Myr relative to the spiral arms
- CRs are assumed to diffuse in the corotating frame of the Sun
- Four spiral arms, two major and two minor, are assumed



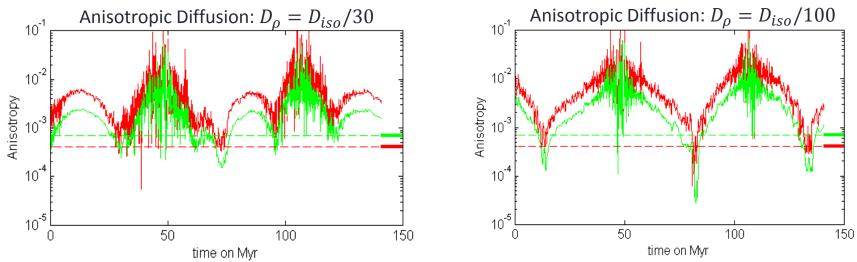
Xu *et al.,* Science (2006)

A tail-like distribution of sources from spiral front is assumed to model spiral arms: P(d)=exp(-d/300 pc)


Anisotropy at 20 TeV

- Anisotropy is dependent on our location with respect to the spiral arms
- Even for isotropic diffusion, near the inner edge of the spiral arm flux cancellation causes a dip in the radial anisotropy
- Anisotropy is smaller in the inter-arm regions due to distantness of the sources and flux cancellation

Anisotropy vs. Energy


- Near a spiral arm anisotropy is higher due to proximity of sources and the fluctuation is smaller due to larger number of contributing sources
- Fluctuation in the dip period is comparatively large

Energy in TeV

Anisotropy in 20 TeV and 400 TeV energy band

- During the Inter-arm dip, anisotropy is below the measured value in 20 and 400 TeV band for about 30 % of time for $D_{\rho} = D_{iso}/30$ and 20% of time for $D_{\rho} = D_{iso}/100$
- Location of the dip is parameter dependent
- The dip period last for about 5 Myr

Nearby SNRs

- Anisotropy due to a single source: $3r/2ct \approx \frac{10^{-2}}{2} \left(\frac{r}{kpc}\right) \left(\frac{t}{Myr}\right)^{-1}$
- An anisotropy smaller than 10^{-3} requires that source be within 100 pc

 $d = \sqrt{2D(1TeV) \times Age}$

SNR	Distance(kpc)	Age(Myr)	Anisotropy	d(kpc)
Geminga	0.25	0.3	0.004	1
Monogem	0.3	0.08	0.017	0.52
Vela	0.25	0.01	0.1	0.19
Cygnus loop	0.8	0.015	0.26	0.2
Vela Jr.	0.21	0.001	0.87	0.06

Conclusions

- Large scale radial anisotropy in case of a steep distribution is marginalized by a smaller radial diffusion rate and makes the case of a steep distribution as par with flat distributions.
- Using the diffusion rate that fits B/C ratio, the observed anisotropy can be reproduced for axisymmetric source distribution for about 5 %
- The surprisingly low large scale anisotropy in TeV band could be due to our location in the Galaxy with respect to the spiral arms and small radial diffusion rate
- Anisotropy due to known nearby supernovas is large as compared to the observation, which implies a relatively small TeV CR production in them or their special alignment relative to us.