DAMIC Results and its Current Status

Jing Zhou The University of Chicago Kavli Institute for Cosmological Physics for the DAMIC Collaboration FNAL, Univ. Chicago, Univ. Zurich, Univ. Michigan, Univ. Asuncion

Content

- DAMIC setup at SNOLAB
- Current status of DAMIC
- Comparison of MCNPX simulation with data collected by DAMIC at SNOLAB
- DAMIC100

DAMIC (Dark Matter in CCDs)

2

90% C.L. cross section upper limit with 0.5 g prototype DAMIC at Fermilab (red). **Phys. Lett. B 711 (2012) 264-269**

- DAMIC (Dark Matter in CCDs) is a direct dark matter detection experiment, which focuses on low mass(<10 GeV) DM
- Silicon in CCD as WIMP target
- Progressive program with increasing target mass (currently ~5 g)
- Sub-keVr threshold
- Energy reconstruction
- Position reconstruction
- Signal/background characterization based on patterns of charge collected on CCD plane.

CCD for ionization detection

a CCD pixel

- Electrons / Nuclear recoils deposit energy in the CCD bulk
- Ionized electrons promoted to conduction band (3.62 eV per e⁻h pair)
- Electrons collected and held at the gates
- Charge read out after some exposure time (typically several hours for DAMIC)
- Read out noise level of 2e⁻ RMS, equivalent to 7.2 eV of ionizing energy in silicon

DAMIC at SNOLAB

Cu box with 8 CCDs 6 250 μm thickness 2 650 μm thickness ¹⁰B film under poly slide to measure n background via (n,α) with CCD #1

CCD on AlN support

Holder for assembly

DAMIC at SNOLAB

A Typical CCD image

1 CCD = 8 million pixels 6x3 cm², 1 g of Si 10000 s exposure DAMIC at SNOLAB

Recoil?

Background in current DAMIC at SNOLAB

New AIN frame

8

- AlN is needed to support the current
 250µm CCD (too thin)
- Temporary solution: Cut a hole in the AIN
- Unnecessary with the next generation 1mm thick CCDs

10 times less background

MCNPX Simulation

- Given a source, we get energy deposits in the CCD.
- We also store the mean x, y and z positions of the deposits.
- We use this information with noise + charge diffusion models to construct simulated image.

Comparison between data and simulation

Energy Spectrum

DAMIC100

14

- In the next generation of DAMIC, ≈1mm thick CCDs will be used. No frame and no ITO layer will bring a great reduction of background by a factor of 1000.
- A 1mm thick CCDs (4k*4k pixels) is about 8g. DAMIC100 will have a total of 100 g target mass

We estimate for DAMIC100 O(100) events/year for a quenching factor 0.2, threshold 40 eVee, cross section 2 10⁻⁴¹ cm² and WIMP mass 8.6 GeV.

Conclusion

- DAMIC experiment is a direct dark matter detection experiment using CCD with sub-keV_r threshold.
- DAMIC setup is now installed in SNOLAB, Canada. Background from the AIN support is understood and new AIN frame packaging is underway.
- The MCNPX simulation matches DAMIC data very well.
- DAMIC100 is well-suited to probe the low mass WIMP region hinted by several experiments (DAMA,CoGeNT, CREST, CDMS-Si).