Study of cosmic-ray anisotropy with IceCube, IceTop, and AMANDA

Marcos Santander WIPAC, University of Wisconsin-Madison

Cosmic ray propagation and anisotropy

"Standard model" of galactic cosmic rays:

- Discrete sources (SNRs?) inject CRs with a power-law spectra.
- CRs propagate **diffusively** from their sources in the galactic magnetic field (2-6 µG) which isotropizes the trajectories.

Consequences for anisotropy:

- CR density gradients are visible as anisotropy.
- Anisotropy **amplitude** $\leq 10^{-2}$.
- Amplitude increases with energy.
- Dipole shape.
- **Phase** should point towards the most significant source.

Small-amplitude anisotropy studies require large data sets (> 10⁸ events)

IceCube, IceTop, and AMANDA

All three detectors have collected samples large enough to be sensitive to anisotropy <u>at and below the per-mille level</u>.

IceCube - Large scale anisotropy

- IC22 detector, <u>4 x 10⁹ events</u>, Median energy ~ <u>20 TeV</u>
- First indication of large scale $\sim 10^{-3}$ anisotropy observed in the South.
- Good match to observations in the North.

IceCube - Looking for smaller structure

IceCube - Small scale anisotropy

- Correlate pixels to increase sensitivity to different angular scales.

IceCube - Small scale anisotropy

Statistically significant structure with <u>typical sizes of 10°-20°</u> Abbasi et al., ApJ, 740, 16, 2011 arxiv/1105.2326

IceCube - Small scale anisotropy

Preliminary

Origin of small-scale anisotropy

FIG. 1. Renormalized CR flux predicted at Earth for a concrete realization of the turbulent magnetic field, *after* subtracting the dipole and smoothing on 20° radius circles. Primaries with rigidities $p/Z = 10^{16} \text{ eV}$ (*left panel*) and $5 \times 10^{16} \text{ eV}$ (*right panel*). See text for the field parameters and boundary conditions on the sphere of radius R = 250 pc.

Giacinti & Sigl arxiv/1111.2536

- Anisotropy at multiple scales arises from turbulent propagation in the GMF
- Different energies probe different distances
- Possible signature in the CR angular power spectrum

Comparison between different energies

- The anisotropy changes position
- Similar peak-to-peak strength
- Smaller characteristic size at high energies

Interpretation of energy dependence

- Anisotropy arises from discrete distribution of sources
- Phase changes according to galaxy parameters and location of nearby sources
- Strength increases with energy (diffusion coefficient)
- Problem: anisotropy not dipolar, not strong enough.

Anisotropy vs. energy

- Anisotropy changes in position, size
- Above 400 TeV there's indication of an increase in strength approaching the CR knee.

Time-dependence studies

- Possible heliospheric effects on the 20 TeV anisotropy
- Solar cycle (11 year) dependence?

Desiati & Lazarian, ApJ, 762, 44, 2013 arxiv/1111.3075

IceCube + AMANDA data: 1.6 x 10¹¹ events (dominated by IceCube) over the last **12 years** (2000 - 2011)

AMANDA

Time-dependence studies

Preliminary studies show a deviation for Period 8.

Statistical uncertainties considered, systematic uncertainties will follow soon.

- Anisotropy observed with *IceCube*, *IceTop*, and *AMANDA*
- Anisotropy studied as a function of **angular scale**, **energy**, and **time**.
 Composition studies starting.
- Wide angular scale range (10°-180°)
- Strength in the 10⁻⁴-10⁻³ range
- Different energies: 20 TeV to 2 PeV
- 20 TeV anisotropy matches that observed in the North
- Change in shape, orientation from 20 to 400 TeV, larger amplitude at 2 PeV
- No significant time variability over 12 years.

Anisotropy Workshop

September 26-28, 2013

Union South • 1308W Dayton St • Madison, WI wipac.wisc.edu/CRA2013

Advertisement

2nd Cosmic Ray Anisotropy Workshop Sept 26th-28th - Madison, WI

- CR anisotropy, spectrum, and composition measurements (from GeV to EeV)
- Heliospheric physics
- Interstellar Medium
- Cosmic ray origin and propagation
- Galactic magnetic fields

http://wipac.wisc.edu/cra2013

Backup slides

Method to search for CR anisotropy

Moon shadow

- Moon blocks cosmic rays coming from its direction.
- Shadow observed in IC40 and IC59.
- Used to verify pointing, resolution.

Resolution

UHE anisotropy

P. Abreu et al. (Auger Collaboration) arxiv/1212.3083

M. Santander

Anisotropy in galactic grid

Observation of anisotropy by IceTop

- Low-energy band (400 TeV): 0.65 x 10⁸ events
- <u>High-energy band (2 PeV): 2.85 x 10⁸ events</u>
- Deficit region similar to that observed by IceCube
 @ 400 TeV (significance ~ 8σ)
- Anisotropy increases with energy
- Not a dipole

Preliminary

Period	Detector	Start	End	Live-time (days)	No. of events $(\times 10^9)$	χ^2 /dof	p-value
1	AM-II	02/13/2000	11/02/2000	213.4	1.4	11.3/15	0.73
2	AM-II	02/11/2001	10/19/2001	235.3	2.3	16.6/15	0.34
3	AM-II	01/01/2002	08/02/2002	169.2	2.4	26.0/15	0.04
4	AM-II	02/09/2003	12/17/2003	236.0	2.2	19.3/15	0.20
5	AM-II	01/05/2004	11/02/2004	225.8	2.5	14.3/15	0.50
6	AM-II	12/30/2004	12/23/2005	242.9	2.6	21.0/15	0.14
7	AM-II	01/01/2006	09/13/2006	213.1	2.4	24.4/15	0.06
8	IC22	06/01/2007	03/30/2008	269.4	5.3	45.2/15	7×10^{-5}
9	IC40	04/18/2008	04/30/2009	335.6	18.9	12.8/15	0.62
10	IC59	05/20/2009	05/30/2010	335.0	33.8	11.1/15	0.75
11	IC79	05/31/2010	05/12/2011	299.7	39.1	6.5/15	0.97
12	IC86	05/13/2011	05/14/2012	332.9	52.9	8.9/15	0.88

* Statistical uncertainties only

Compton-Getting effect

IceCube - Anisotropy at 400 TeV

 Cut on zenith angle and number of triggered DOMs in IceCube to get a higher energy data sample. <u>Final sample</u>: 6.1 x 10⁸ events

• 400 TeV median energy, anisotropy at 10^{-3} level, size ~ 20° , significance 6.3σ

IceCube - Anisotropy at 400 TeV

 Cut on zenith angle and number of triggered DOMs in IceCube to get a higher energy data sample. <u>Final sample</u>: 6.1 x 10⁸ events

• 400 TeV median energy, anisotropy at 10^{-3} level, size ~ 20° , significance 6.3σ

Possible sources for Milagro hotspots

° Sun Magnetic Mirror Local Source

- Non-standard magnetic fields and diffusion mechanisms
- Geminga? (155 pc)

Salvati and Sacco. A&A 485, 527-529 (2008)

CR beams

Malkov, M. A., Diamond, P. H., Drury, L. O. C., & Sagdeev, R. Z. 2010, Astrophys. J., 721, 750

 Magnetic mirroring and funneling from nearby source

Drury and Aharonian. Astropart. Phys. 29 420-423 (2008)

M. Santander

Possible implications of anisotropy (large scale)

Name	Distance	Age
SN 185	0.95 kpc	1800 yrs
RX J1713.7-3946	1 kpc	2000 yrs
S 147	0.8 kpc	4600 yrs
G114.3 + 0.3	0.7 kpc	7700 yrs
Cygnus Loop	0.77 kpc	20000 yrs
G65.3+5.7	0.8 kpc	20000 yrs
Vela	300 kpc	11000 yrs
HB21	800 kpc	23000 yrs

- Effect of real local sources
- No Vela Junior (anisotropy too large)
- Are the propagation assumptions <u>too "local"</u>?
 Isotropic diffusion, connection to other observables.

<u>Problem:</u> Anisotropy not dipolar

Comparison to IC59 400 TeV

IC59 - 20 TeV

Large scale anisotropy observations

- Several observations of large scale anisotropy in the north
 - ~10⁻³ strength
 - 1-100 TeV energy range

Small scale anisotropy observations

Milagro, Tibet and ARGO
 report small scale structures
 with significance > 10σ

~10⁻⁴ strength

