High-Energy Neutrinos from Cosmic Explosions

Kohta Murase Institute for Advanced Study, USA

IceCube Particle Astrophysics Symposium May 2013

Outline

GRBs & SNe = violent cosmic explosions at the death of massive stars

GRB-SN con., jet dynamics, composition + CR origin, CR acc. mechanisms

Overview of GRBs/SNe as HE v sources

- 1. GRBs as UHECR sources
- 2. "Subphotospheric" neutrinos
- 3. Possibilities for PeV events (quick)

Neutrino Production in the Source

 $\varepsilon_v^{b} \sim 0.05 \varepsilon_p^{b} \sim 0.01 \text{ GeV}^2 \Gamma^2 / \varepsilon_{\gamma,pk} \sim 1 \text{ PeV} \text{ (if } \varepsilon_{\gamma,pk} \sim 1 \text{ MeV)}$

Meson production efficiency (large astrophysical uncertainty) $f_{py} \sim 0.2n_{\gamma}\sigma_{p\gamma}(r/\Gamma) \propto r^{-1}\Gamma^{-2} \propto \Gamma^{-4}\delta t^{-1}$ (if IS scenario r ~ $\Gamma^{2}\delta t$)

parameters for f_{py} (L_y, photon spectrum, Γ , r (or δt)) + E_{CR} (ex. ~10 E_y)

CR Acceleration in "Classical" Pictures

Recent IceCube Limits on Prompt v Emission

Applications to Individual GRBs

~10 yr observations by IceCube can cover relevant parameter space in the IS scenario w. GRB-UHEp hypothesis

Remarks: Two Important Cases

- **GRBs=UHEn sources (optimistic case)** Escaping UHEn \rightarrow UHEp via neutron decay $\epsilon_v^2 \Phi(\epsilon_v) \sim \epsilon_n^2 \Phi(\epsilon_n) \sim \epsilon_{CR}^2 \Phi(\epsilon_{CR}) \sim a \text{ fewx10}^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ \rightarrow ruled out by IceCube Ahrels et al., APh, 35, 87 (2011)
- GRBs=UHE heavy-nuclei sources (pessimistic case)
- "Nucleus-survival bound" KM & Beacom, PRD, 81, 123001 (2010) $\tau_{A\gamma} \sim n_{\gamma} \sigma_{A\gamma}(r/\Gamma) < 1$ $f_{mes} \sim (0.2/A)n_{\gamma} A \sigma_{p\gamma}(r/\Gamma) \sim \tau_{A\gamma}(0.2\sigma_{p\gamma}/\sigma_{A\gamma}) < 10^{-3} (for Fe)$ $\rightarrow \epsilon_{v}^{2} \Phi(\epsilon_{v}) < 10^{-3} \epsilon_{v}^{2} \Phi_{WB}(\epsilon_{v}) \sim a few \times 10^{-11} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ ex. $\sim 3 \times 10^{-11} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ obtained in a model below IceCube limits (but hard to test...)

2. Subphotospheric Neutrinos (that do not require UHECRs)

Fall of "Classical" GRB Pictures

 $(\tau_T = n\sigma_T(r/\Gamma) = 1)$ r~10¹¹-10¹³ cm Mag. Dissipation ex. r~10¹⁵-10¹⁶ cm (model-dependent)

modified-thermal emission dissipation: shock/n-p collision

GeV-PeV Neutrinos: Subphotospheric Shock Dissipation

$$f_{p\gamma} > 1 \text{ and } \tau_T = n_e \sigma_T (r/\Gamma) \sim 1-10 \Leftrightarrow f_{pp} = (\kappa_{pp} \sigma_{pp} / \sigma_T) \tau_T \sim 0.05-0.5$$

 \therefore NO UHECR acc., much radiation in jets → unlikely E_{CR}~10E_γ

Quasi-Thermal Neutrinos: Neutron-Loaded Outflows

Remarks: Subphotospheric Emissions from SNe?

SN shock breakout emission (τ_{T} ~c/V_s>>1) (super-luminous SNe, trans-relativistic SNe)

- Fermi acc. is possible at $\tau_{T} < c/V_{s}$ KM+ 11 PRD Katz, Sapir & Waxman 11 (NOT at radiation-mediated shocks) Kashiyama, KM+ 13 ApJL
- TeV-PeV vs, detectable up to ~10 Mpc

Neutron-loaded relativistic outflows from proto-NS (choked jets, proto-magnetar winds)

- Inevitable vs & no Fermi acc. is needed
- Additional n-p conversion acc.
- GeV-TeV vs, ~100 for a Galactic SN

Kashiyama, KM & Meszaros 13

KM, Dasgupta & Thompson 13

3. Possibilities for PeV Events

PeV Events Reported in Neutrino 2012

~ PeV neutrinos are found in UHE neutrino search Atmospheric v background looks small at these energies

Various Astrophysical Predictions

Some predictions (ex. GRBs, accretion shocks) have the right flux level w. a break/peak at ~PeV Breaks may come from a meson cooling break or an intrinsic break in CR spectra

Can GRBs Explain Two Events?

It looks difficult (but more statistics are obviously needed)

- Untriggered ~ 2 x triggered <~ 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹
- Smaller than the required flux ~ 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹

Other Classes of GRBs & SNe

We may miss a lot of "untriggered" transients

• Low-luminosity GRBs (or trans-relativsitic SNe) E_{γ}^{iso} ~10⁵⁰ erg , ρ ~10²-10³ Gpc⁻³ yr⁻¹

(KM+ 06 ApJL, Gupta & Zhang 07 APh, Kashiyama+ 13 ApJL)

- Ultra-long GRBs E_γ^{iso}~10⁵³ erg, ρ~1 Gpc⁻³ yr⁻¹? (KM & loka 13)
- Hypernovae
 E_k~10⁵² erg, ρ~2000 Gpc⁻³ yr⁻¹ (Wang+ 07 PRD)
- Crashing SNe (including super-luminous SNe & SNe IIn) E_k~10⁵¹ erg, ρ~1000 Gpc⁻³ yr⁻¹? (KM+ 11 PRD, Katz+ 11)

All of them might explain ~PeV events though they are uncertain

Example: Low-Luminosity GRBs

Predictions are just taken from KM et al. 06 ApJL (not renewed)

Summary

GRB-UHECR hypothesis in "classical" GRB pictures

- Optimistic cases were excluded (ex. UHEn-escape scenario)
- Most IS parameter ranges will be covered in ~10 yr if UHEp
- Hard to exclude UHE heavy-nuclei scenario
- Do not forget afterglow neutrinos (PeV-EeV $vs \rightarrow ARA$)
- Subphotospheric emissions (GRBs & SNe)
- Probing the onset of CR acc. in GRBs, SLSNe & trans-rel. SNe
- Relevance of GeV ν detectors for quasi-thermal νs from ns
- ~ PeV neutrinos may start to be detected
- Less-triggered populations (ex. LL GRBs) may contribute
- Need searches for such longer-duration transients

Backup Slides

Remark I: Subphotospheric Shock Dissipation in SNe?

<u>SN shock breakout emission ($\tau_T \sim c/V_s >>1$)</u> (super-luminous SNe, trans-relativistic SNe)

- Fermi acc. is possible at $\tau_T < c/V_s$ (NOT at radiation-mediated shocks) KM+ 11 PRD Katz, Sapir & Waxman 11 Katz, Sapir & Waxman 11 Kashiyama, KM+ 13 ApJL
- TeV-PeV vs, detectable up to ~ 10 Mpc

Remark II: Neutron-Loaded Outflows in SNe?

<u>Neutron-loaded relativistic outflows from proto-NS</u> (choked jets, proto-magnetar winds)

- Inevitable vs & no Fermi acc. is needed
- Additional n-p conversion acc. Kashiyama, KM & Meszaros 13
- GeV-TeV vs, ~100 for a Galactic SN

KM, Dasgupta & Thompson 13

<u>Key idea</u>

magnetic outflow acceleration \rightarrow neutrons should be decelerated at the termination shock via n+p $\rightarrow N\pi$

Prompt Emission

Ultra-High-Energy Cosmic Rays?

Fermi shock acceleration (in "classical" pictures)
-> not only electrons but protons are accelerated
ε_p < erB ~ 3x10²⁰ eV r₁₄B₄ (Waxman 1995, Vietri 1995)

If UHECR energy output ~ GRB radiation energy $E_{\text{HECR}}^{\text{iso}} \sim E_{\gamma}^{\text{iso}} \sim 10^{53} \text{ erg}$

with local GRB rate density: ~ 1 Gpc⁻³ yr⁻¹

(e.g., Wanderman & Piran 2010, Dermer 12)

UHECR budget (from obs.): Q_{HECR} ~ 10⁴⁴ erg/Mpc³/yr

Basics of *v* and *γ*-ray Emission

•v higher break energy $\varepsilon_v^{\pi syn} \sim 25 \text{ PeV}$

GRB Prompt v Emission

Event rates by IceCube for 1 GRB @ $z\sim1 \sim 10^{-3}$ -10⁻¹ \rightarrow Cumulative v background (time/space coincidence)

Testable: GRB-UHEp hypothesis (E_{HECR}/E_{GRBγ} > 1 required)

Hadronic Model (for Extra Component)

Cumulative Background?

E, [GeV] Many models are still consistent with recent upper limits by IceCube

Cases of Large Emission Radii

Models predicting low neutrino fluxes were considered before IceCube were constructed

Zhang & Kumar 13 PRL

KM et al. 08 PRD

Comments on UHE Nuclei Sources

- Motivation: PAO composition (interpretation is not settled)
- If heavy-rich at Earth, most nuclei must survive in sources survival from photodisintegration gives

 $\tau_{A\gamma} \sim n_{\gamma} \sigma_{A\gamma} \Delta < 1$ photon density should be small

Aside from issues on escape & abundance (e.g., Metzger+ 11) survival is allowed only at sufficiently large radii, GRB (Wang et al. 08 ApJ, KM et al. 08 PRD) AGN (Peer, KM, & Meszaros 09 PRD, KM et al. 12 ApJ)

but v production should be inefficient

Dissipative Photosphere Scenario

e.g., Thompson 1994, Meszaros & Rees 2000, Rees & Meszaros 2005, Peer et al. 2006, Giannios 2006, Ioka, KM et al. 2007, Beloborodov 2010

Emissions from τ_τ~1-10 "dissipative photosphere"

- internal shocks
- interaction with star or wind
- recollimation shocks
- magnetic reconnection
- collisions with neutrons

•Re-conversion of kinetic energy to radiation energy •High radiative efficiency & stabilization of $\varepsilon_{\gamma,pk}$ **Observational Hints**

Theory: Quasi-Thermal Emission

- Comptonized thermal/geometrical effect
 - $\rightarrow \alpha \sim -1$ or harder is possible (w. some tuning)

Cosmic-Ray Acceleration?

 In either shock acc. or magnetic reconnection, Fermi mechanisms lead to acceleration of both p and e

WUHECRs cannot be produced around the photosphere

+ meson/muon cooling synchrotron, IC, adiabatic, **πp**, μ**p** (kinetic eq.)

Prompt Emission (Quasi-Thermal)

Passive cooling Hadronic injection+Coulomb heating 1057 1057 1056 =6001056 Γ=300 1055 1055 1054 1054 dŇ/dlnE dŇ/dlnE 1053 1053 1052 1052 1051 1051 $\Gamma = 600$ $\Gamma_{n} = 100$ 1050 1050 1049 1049 10 100 105 0.001 0.01 0.1 1000 0.001 0.01 0.1 100 1000 104 10 E [MeV] E [MeV] from Beloborodov

Collisional heating leads to the tail emission

Neutron-Loaded Outflow

- GRB engine BH+accretion disk
- Neutron-rich disk
- Powerful magnetar
- Maybe entrained in the jet

Prospects for DeepCore+IceCube

- Including DeepCore is essential at 10-100 GeV
- Reducing atmospheric v background is essential
 → select only bright GRBs w. > 10⁻⁶ erg cm⁻²

Afterglows

GRB Afterglow Emission

X-ray/FUV Flare: "late" internal dissipation like prompt emission

Afterglow: syn. emission from electrons accelerated at ext. shock

GRB Early Afterglow Emission

 Most vs are radiated in ~0.1-1 hr (physically max[T, T_{dec}]) Afterglows are typically explained by external shock scenario •But flares and early afterglows may come from internal dissipation

Flares – efficient meson production ($f_{p\gamma} \sim 1-10$), maybe detectable External shock – not easy to detect both vs and hadronic γ rays

Flares and Low-Luminosity GRBs

Swift

20 November 2004

Swift brought us many novel results ↓ Additional possibilities of CR production and v/γ emission!

PeV v, GeV-TeV γ
(KM et al. 06)Flares(Gupta & Zhang 07)PeV-EeV v, GeV γ
(KM & Nagataki 06)

Novel Results of Swift (GRB060218)

Neutrinos in Jet Scenario

pγ production efficiency

$$f_{p\gamma} \simeq 0.06 \frac{L_{\max, 47}}{r_{15}(\Gamma/10)^2 E_{5 \text{ keV}}^b} \begin{cases} (E_p/E_p^b)^{\beta-1} & (E_p < E_p^b), \\ (E_p/E_p^b)^{\alpha-1} & (E_p^b < E_p), \end{cases}$$

XLL GRBs accompanying relativistic SNe may produce UHECRs KM+ 06 ApJ (energetics), Wang+ 07 PRD (ext. free exp. shock), KM + 08 PRD (int. or ext. dec. shock)

Novel Results of Swift (Flares)

2. Flares in the early afterglow phase

- Energetic (E_{flareγ} ~ 0.1 E_{GRBγ}) (e.g., Falcone et al. 07) (E_{flareγ} ~ E_{GRBγ} for some flares such as GRB050502B potentially comparable to energy of prompt emission)
- - Flaring in the far-UV/x-ray range ε_{pk} ~ (0.1-1) keV
 - Lower Lorentz factors (likely)
 Γ ~ a few×10
 - Flares are common

 (at least 1/3-1/2 of LGRBs)
 (also seen in SGRBs)

Energetics

Neutrino Energy Flux \sim RatePhotomeson ($p \rightarrow \pi$)
Production EfficiencyNonthermal
Baryon Energy

 \downarrow Normalizing all the typical values for HL GRBs to 1

	HL GRB (Waxman & Bahcall 97)	Flare (Murase & Nagataki 06)	LL GRB (Murase et al. 06) (Gupta & Zhang 07)
Isotropic energy	1	~0.01-0.1	0.001
Meson Production Efficiency	1	10	1
Apparent Rate	1	1	~100-1000
The contribution to neutrino background	1	~0.1-1	~0.1-1

Hence, we can expect flares and LL GRBs are important!

Neutrino Predictions in the Swift Era

KM & Nagataki, PRL, 97, 051101 (2006) KM, Ioka, Nagataki, & Nakamura, ApJL, 651, L5 (2006)

 ν flashes \rightarrow Coincidence with flares/early AGs, a few events/yr

 ν s from LL GRBs \rightarrow little coincidence with bursts, a few events/yr

Approaches to GRBs through high-energy neutrinos Flares \rightarrow potentially more baryon-rich and efficient neutrino emitters LL GRBs \rightarrow possible indicators of SNe followed by opt. telescopes

Supernovae

Limitation of Shock Acceleration

upstream

downstream

downstream

upstream

Shock Breakout & Collisionless Shocks

- Necessary condition for collisionless shocks $| < |_{dec} \sim (1/n \sigma_T \beta) \Leftrightarrow \tau_T < 1/\beta$ (not sufficient condition: ex. steep density profile) (Waxman & Loeb 01 PRL, KM et al. 11 PRD, Katz, Sapir & Waxman 11)
- Shock breakout: $t_{diff} \sim t_{dyn} \Leftrightarrow \tau_T \sim 1/\beta$ $t_{diff} \sim l^2/\kappa \ (\kappa \sim (c/n \ \sigma_T))$ $t_{dyn} \sim l/\beta c$ wind CSM $\rightarrow r_{bo} \sim l_{bo} \sim (1/n \ \sigma_T \ \beta)$ (unless ultra-relativistic)
- Ex. int./rev. shock at r=10⁹ cm in choked jets (L_k =10⁴⁸ erg/s, Γ =10) $\rightarrow \tau_T \sim 10^3$, CR acc. is difficult (see also Levinson & Bromberg 08 PRL)

Possibility: Post-Shock-Breakout?

Expect formation of collisionless shocks & CRs

pp cooling:
$$t_{pp} = 1/(n \kappa_{pp} \sigma_{pp} c)$$

dynamical: $t_{dyn} = I/\beta c$
 $\rightarrow f_{pp} = (I/\beta) n \kappa_{pp} \sigma_{pp}$

 $f_{pp}(r_{bo}) \sim \beta^{-2} (\kappa_{pp} \sigma_{pp} / \sigma_T) \sim 0.03 \beta^{-2}$

 β ~ 1 ⇔ trans-relativistic SNe (pγ efficiency ~ 1: dominant)
 β ~ 0.01-0.03 ⇔ typical SN velocity pp efficiency ~ 1

LL GRBs & Relativistic SNe

from Fan et al. 10

Nearby GRBs (ex. 060218@140Mpc, 980425@40Mpc) may form another class

- much dimmer ($E_{GRB\gamma}^{iso} \sim 10^{50} \text{ erg} \Leftrightarrow E_{GRB\gamma}^{iso} \sim 10^{53} \text{ erg/s}$)
- more frequent (ρ₀ ~10²⁻³ Gpc⁻³ yr⁻¹ ⇔ ρ₀ ~0.05-1 Gpc⁻³ yr⁻¹)
- maybe more baryon-rich? (e.g., Zhang & Yan 11 ApJ)
- relativistic ejecta → same class as SNe 2009bb? (Soderberg+ 10 Nature)

Two Competing Scenarios

 Inner jet dissipation (similar to GRBs)

(Toma et al. 07 ApJ, Fan et al. 10 ApJL)

Shock breakout from optically-thick wind

(Waxman et al. 07 ApJ, Nakar & Sari 12 ApJ)

The signal is detectable for nearby SNe at D < 10 Mpc

SNe IIn & Super-Luminous SNe

Circumstellar-Material-Collision Scenario

From SNe IIn to Luminous SNe

 τ_T >> 1 collision → luminous SNe strong thermalization (optical, infrared) ex. SN 2006gy R ~ 3x10¹⁵ cm, V ~ 5000 km/s n_{CSM} ~ 3x10¹⁰ cm⁻³ (M_{CSM} ~ 10 M_{sun}) characteristic timescale: t_{bo} ~ t_{diff} ~ t_{dyn} ~ 60 day

• $\tau_T < 1 \text{ collision} \rightarrow \text{SNe IIn}$ weaker thermalization (optical + x rays, radio) ex. SN 2006jd $R \sim 3x10^{16}$ cm, V ~ 5000 km/s $n_{CSM} \sim 3x10^6$ cm⁻³ ($M_{CSM} \sim 1 M_{sun}$) characteristic timescale: $t_{dyn} \sim 2$ yr

Neutrinos from SNe Colliding with Massive CSM

