Operation and First Data of DM-Ice17 at the South Pole

DM-CE A Dark Matter detector in the South Pole Ice

Matthew Kauer (on behalf of the DM-Ice collaboration) IPA 2013 Madison, WI

May 13

University of Wisconsin - Madison

"Tension" in the field

DAMA 8.9σ Modulation:

Phase: 146 ± 7 days

Period: 0.999 ± 0.002 yr

Background: ~ 1 cpd/kg/keV

Amplitude: 0.01 cpd/kg/keV

Matthew Kauer, UW Madison

IPA 2013, Madison

v_~220km/s with Nal Detectors galactic plane Cygnus 60 December (Japan) Gran Sasso Gran Sasso Canfranc **PICO-LON** Northern SABRE ANAIS DAMA/Libra ~100kg Hemisphere 250kg (Princeton) (Korea) R&D starting in 2014? running **KIMS** South Pole **ANDES** Lab Southern **DM-Ice** (proposed) expected Hemisphere 17 kg running start 2018 R&D for 250 kg ice rock

Annual Modulation Dark Matter Searches

Several groups conducting ultra-pure crystal R&D with several vendors to go to the full scale

Only experiments in the Southern Hemisphere can definitively confirm DAMA.

June

WIMP Wind

DM-Ice (250 kg Nal)

Use Nal(Tl)

- Eliminate uncertainties due to detector effects and dark matter models
- Crystal Array for sophisticated event tagging

Detection (5 σ) or exclusion

- 500 kg*yr NaI (same scale as DAMA)
- Threshold < 2 keV_{ee}
- Background < 5 cpd/kg/keV

Go to the South Pole

- Seasonal effects have opposite phase
- 2200 mwe overburden
- Ice < 1 ppt U/Th (radon ~0)
- Ice < 1 ppb K
- Ice == great neutron moderator

DM-Ice Sensitivity 500 kg•yr Nal

(2 - 4 keV) with 1, 2, and 5 dru bkg

Matthew Kauer, UW Madison

Global Nal Powder R&D

- From simulation, internal backgrounds dominate, particularly 3 keV ⁴⁰K
- DAMA's crystals (NIMA 592 (2008) 297- 315):
 - ²³⁸U : 1 10 ppt
 - ²³²Th : 1 10 ppt
 - ^{nat}K : < 20 ppb
- NAIAD crystals : 5 10x DAMA bkg (PLB 616 (2005) 17-24)

32" diameter Nal Crystal

Manufacturer	Form	Measurement	²³⁸ U (ppt)	²³² Th (ppt)	^{nat} K (ppb)
Saint Gobain	Powder	DAMA (HPGe)	< 20	< 20	< 100
Saint Gobain	Crystal	DAMA/LIBRA	0.7 - 10	0.5 - 7.5	< 20
Saint Gobain	Crystal	ANAIS-0	6.1	3.2	410
Saint Gobain	Crystal	DM-Ice (FNAL)			
Sigma-Aldrich	Powder (standard grade)	DM-Ice (HPGe)	40	89	440
Sigma-Aldrich	Powder (astro grade)	DM-Ice (HPGe)	63	< 95	< 126
Sigma-Aldrich	Powder (astro grade)	A-S (ICPMS)	-	-	~ 4
Alpha-Spectra	Powder	DM-Ice (HPGe)	< 100	< 200	< 120
Alpha-Spectra	Powder	ANAIS-25 (HPGe)	< 55	< 130	< 90

DM-Ice17 now has

2 NAIAD crystals

• Also working with SICCAS (Shanghi)

Technical challenge == a method to measure K < 100 ppb level

- ICPMS is promising \rightarrow < 10 ppb
- Samples have been sent...

Matthew Kauer, UW Madison

IPA 2013, Madison

DM-Ice17 (prototypes)

Matthew Kauer, UW Madison

Data Transfer

- Remotely programmable sample rate, HV & threshold
- Each PMT set to trigger ~ 0.3 spe
- Waveform recorded only when coincidence between both PMTs w/in 800 ns on a single crystal
- Waveform from each PMT digitized separately in the ice by IceCube mainboards and sent to hub
- Time stamp synchronized to IceCube GPS and calibrated for transit time
- Data sent over satellite to Madison, WI

Detector Monitoring

- 1. Temperature of the boards
 - ~10°C above surrounding ice
 - Fast (2-3 weeks) decrease during freeze-in
 - Slower decrease over a few months after freeze-in

HV Monitor

- 2. Pressure follows similar trend as temperature (ADC resolution limited)
- 3. High Voltage on the PMTs

Values recorded every 2 sec. before April 2012. Every 60 sec. since April 2012.

data

Temp and pressure sensors mounted on the mainboards

Matthew Kauer, UW Madison

1250

1200

1150

1100

1050F

1000

950

900

850^L

100

200

300

400

500

HV Monitor (V)

700

days

DM0

DM1

DM2

DM3

600

days

Detector Monitoring

PMT Trigger Rates

- Single PMT trigger rates
- General decay over time
- Single trigger rate variation seems mostly in the noise (not observed in coincident data)

DM-Ice17 Livetime

- Data run since June 2011
- 99.75% uptime
- well known down times (power cycling, pedestal and dark noise runs)

Matthew Kauer, UW Madison

IPA 2013, Madison

Signal Channels

4-channel output

- Record each event passing coincidence between PMTs
- ATWD = 14bits dynamic range
- Energy = sum over entire ATWD waveform
 - 5-6 photoelectrons/keV
 - Sum over 600 ns
 - FADC currently does not resolve as well
- Stable data taking since June 2011
 - 29.6 kg.yr of stable data to date
 - 99.75% livetime

Energy Spectrum: Gammas

Matthew Kauer, UW Madison

IPA 2013, Madison

Cosmogenic ¹²⁵I (in the Nal crystal)

Matthew Kauer, UW Madison

Resolution of DM-lce17

DM-Ice17 Resolution

3 keV ⁴⁰K Peak

Background Model

All components measured/estimated and simulated

IPA 2013, Madison

Region of Interest

- Good agreement with simulation above 20 keV
 - Surface event simulation at 12 keV in progress
- We understand our detector to 4 keV
 - NAIAD published to 4 keV; we are pushing lower
- We model our 3 keV peak to within a factor of 2 of simulation
 - Understanding efficiencies
 <3 keV in progress

Looking ahead:

- Backgrounds in ROI 5x higher than simulated for full scale DM-Ice
- Multi-crystal veto will suppress 3 keV events

Conclusions:

- successfully deployed two detectors 2450 meters in the ice
- incredibly stable environment
- calibration from internal/external backgrounds (no calib sources)
- Geant4 background model in agreement with data
- good understanding down to 4 keV (~7 cpd/kg/keV)
- pushing our energy threshold < 2 keV

University of Wisconsin – Madison

Reina Maruyama, Francis Halzen, Karsten Heeger, Albrecht Karle, Carlos Pobes, Walter Pettus, Zachary Pierpoint, Antonia Hubbard, Bethany Reilly, Matthew Kauer

University of Sheffield

Neil Spooner, Vitaly Kudryavtsev, Dan Walker, Matt Robinson, L. Thompson, Sam Telfer, Calum McDonald

University of Alberta

Darren Grant

University of Illinois at Urbana-Champaign Liang Yang

Fermilab Lauren Hsu

Shanghai Jiao Tang University Xiangdong Ji, Changbo Fu

<u>Penn State</u> Doug Cowen, Ken Clark

NIST-Gaithersburg

Pieter Mumm

University of Stockholm

Chad Finley, Per Olof Hulth, Klas Hultqvist, Christian Walach

<u>DigiPen</u> Charles Duba, Eric Mohrmann

Boulby Underground Science Facility

Sean Paling

SNOLAB Bruce Cleveland

> NSF ANT-1046816 PHY-1151795

IPA 2013, Madison

BACKUP SLIDES

Data Acquisition and Digitizing

- IceCube mainboards
- Thoroughly engineered and tested
- Slightly modified for DM-Ice

PMT thresholds	~ 0.3 PE	
Coincidence requirement	< 800 ns	
FADC (@ 40 MHz)	255 bins = 6.375 us	
ATWD (@ 200 MHz)	128 bins = 600 ns	
PMT Trigger Rate	100-150 Hz	
Coincidence Trigger Rate	~ 4 Hz	

Matthew Kauer, UW Madison

IPA 2013, Madison

ADC Units

Scintillation Events

- Signal comes from scintillation in the crystal.
- Coincidence required between the two attached PMTs (800 ns).
- At high energies, signal has the characteristic scintillation pulse shape.
- At low energies, increasingly events are just a series of single photoelectrons.

Energy Calibration

Nal Light Yield

- Obtain 1pe-ped separation from dark noise runs (ie no coincidence requirement)
- Normalize the energy to keV using the energy calibration

xtal-1 = 6.1 +/- 0.07 pe/keV xtal-2 = 4.9 +/- 0.05 pe/keV

Consistent with:

- DAMA = 5.5 7.5 pe/keV
- NaiAD = 5 8 pe/keV

Detector Stability

Detector calibration is stable to 1.3% over 18 months.

- 1.3% decrease over 18 months in light collection (peak position) observed at 600 and 1460 keV
- No observable change in calibration at 45 keV
- We have not had to change our calibration with time
 - Any changes at higher energies are smaller than our resolution

Cosmogenic ⁵⁴Mn (in the steel)

EM Interference (EMI) Events

- Electromagnetic interference caused by the hardware monitoring can trigger the detector.
- Monitoring reduced from every ~2 seconds to every ~60 seconds in March 2013 to reduce this event rate.
- This change reduced EMI events from 21% of all events to 0.9% of all events in prototype 1.
- Current cut variable relies on 'spikiness' of waveform :

[–] Sum(((next – bin) – (bin – previous)) ^2)

"Thin Pulse" Events

- Interactions within the light guides and/or PMTs can also trigger the detector.
- These events are referred to as thin events due to their characteristic pulse shape.
- Current cut variable :
 - Pulse Integral / Pulse Maximum
- Current cut value chosen to preserve 75% of signal with a signal to noise ratio > 10 in cut region.
- Current Energy Threshold
 - : 4 keV

Peak Finding Cut (Dm-Ice Madison)

Energy Spectrum after Peak Finding Cut

- "Peak Finding" in theory counts the number of photoelectrons in each PMT.
- In practice, a simple peak finding algorithm is used to count local maxima above a threshold.
- Cut Requirement : Each PMT sees >4 peaks

Steppiness Cut (DM-Ice Sheffield, UK)

- Steppiness in essence requires multiple SPEs to occur in quick succession in at least one PMT.
- This is achieved by requiring a smoothed waveform to break a threshold.
- Steppiness is not a good cut of thin pulses so a series of cuts is required to remove them.
 - Energy symmetry between the two PMTs
 - Mean time symmetry between the two PMTs
 - Mean time
 - Tail energy fraction

Internal Crystal Contamination

- Internal ²³⁸U and ²³²Th contamination in our crystal is estimated by looking at the alpha region
- Matching simulation to data yields this estimate
- ²³⁸U chain is out of equilibrium
- Alpha quenching is similar to that seen by DAMA

Alpha Quenching

DM-Ice17: $\alpha/\gamma = 0.50 + 0.0245 * E_{\alpha}(MeV)$

DAMA: $\alpha/\gamma = 0.47 + 0.0257 * E_{\alpha}(MeV)$

U238 (broken) and Th232 in crystal, Scaled alphas, 10 keV/bin

	DM-lce17 (uBq/kg)	DAMA (uBq/kg)	DM-Ice17 to DAMA ratio
U238	No info	2	-
U234	93	12	7.8
Th230	93	12	7.8
Ra226-Pb210	933	18	52
Bi210-Pb206	1680	33	51
Th232	214	6	36

⁴⁰K in the Crystal

- ⁴⁰K in the crystal is estimated from the beta shoulder
- Matching simulation to data yields about 650 ppb ⁴⁰K

