Deflections of UHECRs from Cen A in the Galactic magnetic field

Azadeh Keivani Department of Physics & Astronomy Louisiana State University

> Work with: Glennys Farrar (NYU) Michael Sutherland (LSU) Jim Matthews (LSU)

> > IPA Symposium Madison, WI 5/13/2013

Outline

Galactic Magnetic Field * Current Models * JF12 Model

Tracking UHECRs
* Centaurus A
* Method

Summary + What comes next

Galactic Magnetic Field: Current Models

Common properties:

- + Large-scale regular component
- + Follow the spiral arms
- + Turbulent component
- + Local parameters

Van Eck, et al. (2010)

Jansson-Farrar GMF Model (JF12)

This model includes:

- Regular large scale component
- Random field component
- Striated random field component

Fit to the observational data: More than 40k extragalactic RM and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps

R. Jansson and G. R. Farrar, ApJ 761 (2012)

JF12 Regular Component*

- 3 large scale and divergenceless components:
 - Spiral disk (generalized from Brown et al., 2007)
 - ➢ 8 field strengths for arms at r=5kpc
 - > 1 field strength for ring (3kpc<r<5kpc)
 - > Disk-halo transition
 - > Transition width
 - Toroidal halo field
 - Northern/Southern halo strengths
 - > Transition radius, north/south
 - > Transition width
 - > Vertical scale height
 - Poloidal out-of-plane field
 - Field strength at origin
 - > Elevation angle at z=0
 - > Radius where theta=theta0
 - > Exponential scale length
- 22 free parameters

*R. Jansson and G. R. Farrar, ApJ 757 (2012)

The Milky Way to an Extragalactic Radio Observer

JF12 Random* and Striated Field Components

- Superposition of a disk component and an extended smooth halo component
- \diamond 13 Free parameters
- Disk component:
 - ▶ 8 arms as in regular component; $B \approx 1/r$
 - Central region: constant Brms
 - Gaussian vertical profile
- Smooth extended component:
 - ➤ Vertical scale height: 3 kpc
 - ➢ Radial scale length: 10 kpc
 - ➤ Central value: Brms=3µG
- ✤ Using total synchrotron intensity map
- Coherence length of 100 pc or less

The data calls for a **striated component** to the random field:

Whose orientation is aligned with the regular component, having zero mean and RMS strength of $\approx 20\%$ larger than the regular field

With this complete field model, a very good fit to more than 40k extragalactic RM and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps is obtained.

*R. Jansson and G. R. Farrar, ApJ 761 (2012)

Tracking UHECRs

Centaurus A

Forward-tracking for Z up to Iron

1. Injection plane around center of Cen A (the first step)

- 2. Detect them on a sphere surrounded the Earth
- 3. Record the successful events

- 4. Inject particles to a smaller detector size (the second step)
- 5. This time from random positions inside the region of the successful events

The goal of this method is to reach to a small detector closer to reality

R = Rigidity=E/Z: 2, 8, 16, 22, 32, 45, 64 EV detR = the radius of the detector: $0.4 \rightarrow 0.002$ kpc

No random field, R==E/Z=32 EV Observed Directions

No random field, R==E/Z=32 EV Injection Plane

Adding random and striated field, R==E/Z=32 EV Observed Directions

Adding random and striated field, R==E/Z=32 EV Injection Plane

Comparing observed directions with and without random field, R=32 EV

Comparing injection planes with and without random field, R=32 EV

Converged to smaller detr, R==E/Z=32 EV

Efficiency of our method for R=32 EV

Particles from Cen A, 8<R<64 Injection Plane

Particles from Cen A, 16<R<64 Injection Plane

Particles from Cen A, 16<R<64 Observed Directions

Simulated Events and Auger Data Observed Directions

Simulated Events and Auger Data Observed Directions relative to Cen A

Events with E=58, 78, 64 EeV may be consistent with Cen A: Assign higher charge or in different realization of the RGF

Summary: Preliminary Results

- * We see the convergence when we get to smaller detectors
- No matter what the composition is, the region is more compact than anticipated
- It seems CenA in unlikely to be the source of more than a few cosmic rays above 55 EeV, assuming the correctness of JF12 GMF model

What we can do next:

Increasing the number of realizations of random field Checking other similar sources Going lower in the energy Including the extragalactic field model

Thanks for your attention