Recent Results from the Planck Satellite

Sarah Church KIPAC, Stanford University

Planck – 3rd generation CMB satellite

Planck compared to WMAP:

- 3x the angular resolution
- 25x the sensitivity,
- broader frequency coverage

The Planck Satellite

- Launched May 2009
- ✤ Full-sky maps at ~25 to ~1000 GHz
- March 2013 data release covers 15.5 months data

Planck Low Frequency Instrument

 pseudo-correlation radiometers, based on HEMT low noise amplifiers

High Frequency Instrument

 NTD-Germanium bolometric detectors

Selected Planck Data Products

CMB Map and Power Spectrum

Gravitational potential of matter between us and last scattering reconstructed from lensing of CMB fluctuations

Science Highlights that I'll Discuss

✤ Powerful test of ∧CDM

- Standard theory of particle physics + 6 parameter model gives excellent fit to Planck data
- > Some tension in best fit parameter values compared to other data sets, e.g. high Ω_m , low H₀
- Extensions to the model
 - Neutrino Constraints
 - Inflationary Parameters

- Initial power spectrum of scalar modes and tensor modes (arise naturally from quantum fluctuations stretched out by inflation)
- Matter fluctuations begin to collapse as they enter the horizon

TIME

Time at which a given fluctuation enters the horizon

- Initial power spectrum of scalar modes and tensor modes (arise naturally from quantum fluctuations stretched out by inflation)
- Matter fluctuations begin to collapse as they enter the horizon
- ♦ Gravity + radiation pressure couple the baryons and the photon background ⇒ oscillations in the photon-baryon fluid

- Initial power spectrum of scalar modes and tensor modes (arise naturally from quantum fluctuations stretched out by inflation)
- Matter fluctuations begin to collapse as they enter the horizon
- ♦ Gravity + radiation pressure couple the baryons and the photon background ⇒ oscillations in the photon-baryon fluid
- Decoupling removes radiation support; matter fluctuations are frozen into the CMB

- Initial power spectrum of scalar modes and tensor modes (arise naturally from quantum fluctuations stretched out by inflation)
- Matter fluctuations begin to collapse as they enter the horizon
- ♦ Gravity + radiation pressure couple the baryons and the photon background ⇒ oscillations in the photon-baryon fluid
- Decoupling removes radiation support; matter fluctuations are frozen into the CMB
- Scalar modes on certain angular scales are enhanced by this process, leading to the acoustic peaks in the CMB

See as acoustic peaks in the power spectrum

Relation to parameters

- ✤ Physics of peaks depend only on baryon/photon ratio, and non-relativistic to relativistic energy density (total matter to photons + neutrinos) → determines r_s
- Distance depends on geometry and late time effects on the expansion rate.

Relation to parameters

✤ Angular size measured to 0.1% precision from Planck

 $\theta_* = (1.04148 \pm 0.00066) \times 10^{-2} = 0.596724^{\circ} \pm 0.00038^{\circ}$

Data are fit with the "Standard Model" of Cosmology

- Standard model of particle physics.....
- + general relativity.....
- \diamond + ΛCDM in its simplest form
 - spatially-flat
 - > parameters $\Omega_{b}h^{2}$, $\Omega_{m}h^{2}$, Ω_{Λ} , τ
 - a power-law spectrum of adiabatic scalar perturbations -- n_s, A
- If curvature is included, spatial flatness is implied to percent level precision using Planck CMB data alone.

Parameters

	Planck		Planck+lensing		Planck+WP	
Parameter	Best fit	68% limits	Best fit	68% limits	Best fit	68% limits
$\Omega_{ m b}h^2$	0.022068	0.02207 ± 0.00033	0.022242	0.02217 ± 0.00033	0.022032	0.02205 ± 0.00028
$\Omega_{\rm c}h^2$	0.12029	0.1196 ± 0.0031	0.11805	0.1186 ± 0.0031	0.12038	0.1199 ± 0.0027
100 <i>θ</i> _{MC}	1.04122	1.04132 ± 0.00068	1.04150	1.04141 ± 0.00067	1.04119	1.04131 ± 0.00063
τ	0.0925	0.097 ± 0.038	0.0949	0.089 ± 0.032	0.0925	$0.089^{+0.012}_{-0.014}$
<i>n</i> _s	0.9624	0.9616 ± 0.0094	0.9675	0.9635 ± 0.0094	0.9619	0.9603 ± 0.0073
$\ln(10^{10}A_{\rm s})$	3.098	3.103 ± 0.072	3.098	3.085 ± 0.057	3.0980	$3.089^{+0.024}_{-0.027}$
$\overline{\Omega_{\Lambda}........}$	0.6825	0.686 ± 0.020	0.6964	0.693 ± 0.019	0.6817	$0.685^{+0.018}_{-0.016}$
$\Omega_m \ldots \ldots \ldots \ldots \ldots$	0.3175	0.314 ± 0.020	0.3036	0.307 ± 0.019	0.3183	$0.315^{+0.016}_{-0.018}$
σ_8	0.8344	0.834 ± 0.027	0.8285	0.823 ± 0.018	0.8347	0.829 ± 0.012
z _{re}	11.35	$11.4^{+4.0}_{-2.8}$	11.45	$10.8^{+3.1}_{-2.5}$	11.37	11.1 ± 1.1
H_0	67.11	67.4 ± 1.4	68.14	67.9 ± 1.5	67.04	67.3 ± 1.2

Comparison with other data sets

High I data constrain foreground signals that are not well resolved by Planck. Consistency check on parameters

Some tension with low-z measurements of H₀

Contours from adding WMAP polarization data

Higher values of H_0 are difficult to match with the standard Λ CDM model

Well-constrained angular scale of acoustic peaks depends on $$r_{\!_{*}}$$

$$\overline{D_A(z_*)}$$

The addition of WMAP polarization data and high-l data limits the degeneracy

Λ CDM model predicts an acoustic scale for BAO measurements that agrees well with data

Consistency check for the H_0 measurements

Helps to set constraints on additional parameters above and beyond the 6-parameter model

	Plan	nck+WP	Planck	+WP+BAO	Planck+	WP+highL	Planck+V	VP+highL+BAO
Parameter	Best fit	95% limits	Best fit	95% limits	Best fit	95% limits	Best fit	95% limits
Ω _κ	-0.0105	$-0.037^{+0.043}_{-0.049}$	0.0000	$0.0000^{+0.0066}_{-0.0067}$	-0.0111	$-0.042^{+0.043}_{-0.048}$	0.0009	$-0.0005^{+0.0065}_{-0.0066}$
$\Sigma m_{\nu} [eV] \ldots \ldots$	0.022	< 0.933	0.002	< 0.247	0.023	< 0.663	0.000	< 0.230
<i>N</i> _{eff}	3.08	$3.51_{-0.74}^{+0.80}$	3.08	$3.40^{+0.59}_{-0.57}$	3.23	$3.36^{+0.68}_{-0.64}$	3.22	3.30+0.54
<i>Y</i> _P	0.2583	$0.283\substack{+0.045\\-0.048}$	0.2736	$0.283\substack{+0.043\\-0.045}$	0.2612	$0.266^{+0.040}_{-0.042}$	0.2615	$0.267^{+0.038}_{-0.040}$
$dn_s/d\ln k$	-0.0090	$-0.013^{+0.018}_{-0.018}$	-0.0102	$-0.013^{+0.018}_{-0.018}$	-0.0106	$-0.015^{+0.017}_{-0.017}$	-0.0103	$-0.014^{+0.016}_{-0.017}$
<i>r</i> _{0.002}	0.000	< 0.120	0.000	< 0.122	0.000	< 0.108	0.000	< 0.111
w	-1.20	$-1.49^{+0.65}_{-0.57}$	-1.076	$-1.13^{+0.24}_{-0.25}$	-1.20	$-1.51^{+0.62}_{-0.53}$	-1.109	$-1.13^{+0.23}_{-0.25}$

Helps to set constraints on additional parameters above and beyond the 6-parameter model

	Planck+WP+highL+BAO			
Parameter	Best fit	95% limits		
Ω _κ	0.0009	$-0.0005^{+0.0065}_{-0.0066}$		
$\Sigma m_{\nu} [eV] \ldots \ldots$	0.000	< 0.230		
N _{eff}	3.22	3.30 ^{+0.54} -0.51		
<i>Y</i> _P	0.2615	$0.267^{+0.038}_{-0.040}$		
$dn_s/d\ln k$	-0.0103	$-0.014^{+0.016}_{-0.017}$		
r _{0.002}	0.000	< 0.111		
w	-1.109	$-1.13^{+0.23}_{-0.25}$		

Neutrinos

 Effect of increasing radiation density via addition of neutrino families is to suppress small scale power in the CMB

Low-*z* measurements of H_0 push N_{eff} to a higher value

CMB plus BAO also constrains the sum of the neutrino masses

Planck Probes Inflationary parameters

Label	Definition	Physical Origin	
A_s	Scalar Amplitude	V, V'	
n_s	Scalar Index	V', V''	Matter power
α_s	Scalar Running	V', V'', V'''	J spectrum
A_t	Tensor Amplitude	V (Energy Scale)	
n_t	Tensor Index	V'	Primorala
r	Tensor-to-Scalar Ratio	V'	J Gravitational
Ω_k	Curvature	Initial Conditions \checkmark	waves
$f_{\rm NL}$	Non-Gaussianity	Non-Slow-Roll, Multi-Field	Zero to 1%
S	Isocurvature	Multi-Field 🖌	Not detected
$G\mu$	Topological Defects	End of Inflation \checkmark	

See review Baumann et al., arXiv:0811.3919

Implications for Inflation

Consistent with single-field slow-roll inflation

Summary

- A wealth of data from Planck has provided strong evidence for the standard ΛCDM.
- There are a vast number of science results that I didn't have time to touch upon!
- There are some discrepancies with non-CMB data that the Planck team is working to resolve.
- 2014 will see another data release more temperature data; polarization data.

Looking ahead – the CMB isn't done yet!

 Spatial temperature variations:

1.0

Wavelength in millimeters

Frequency spectrum

COBE

satellite

0.5

0.7

**

0.8

0.6

0.4

0.2

0

2.0

Brightness

Picture by W. Hu

- Polarization generated by anisotropic Thomson scattering
- The polarization percentage is high (around 10%), but the signal is still very weak
- Once again the physics is well-understood
- Precision cosmology equally feasible using polarization

"E" and "B" modes

E modes

ONLY FROM TENSOR MODES (gravitational waves)

	11
	i · - — - · i
 1	11
 · · — – ·	11 • • 111
	li
 ··	i · - — - · i
 ··	11 • • • • • • • • • • • • • • • • • •
	111
 	11
	11 • • • • • • • • • • • • • • • • • •
	i — i
 ··	11
	11
 1	11
	11 • • • • • • • • • • • • • • • • • •
	111
 ··	11
	11 • • • • • • • • • • • • • • • • • •
	111
	11
	11 • • • • • • • • • • • • • • • • • •
 • •	
	11
 	11
	11
	11 • • • • • • • • • • • • • • • • • •
	111
 ··	11 • • 111
	11 • • 111
	111
 ··	11 • • • • • • •
 	11 • • • • • • • • • • • • • • • • • •

E Fourier mode B Fourier mode See, e.g. Bunn, 2005

QUaD Experiment (Brown et al. 2009)

Polarization measurements require greater sensitivity than temperature measurements...

The range shown for the gravitational wave background spans the maximum allowable level pre-Planck, WMAP, and the minimum detectable from CMB measurements of a gravitational wave background

Current status of field

Planck data to come 2014

Looking ahead – the CMB isn't done yet!

- The Planck data (polarization to come 2014) are honing in on cosmological parameters with ever greater precision
- However, significantly stronger limits on interesting new physics will require a new generation of CMB polarization experiments
 - Deep integrations on areas of clean sky with tens of thousands of polarization-sensitive detectors
 - Much stronger limits on neutrino and inflationary physics

Presentation by Chao-Lin Kuo at the Cosmic Frontier Workshop, SLAC, March 2013

Stage-IV CMB Duplicate (>10x) Focal planes

98 NTDs (95/150 GHz)512 TESs (150 GHz) per F.P.>4,000 TESs (150 GHz) per F.P.Stage IStage IIStage IIIPlanck-styleFieldedBeing builtQUaD, BICEPKeck, SPT, Polarbear, ACT

Presentation by Clarence Chang at the Cosmic Frontier Workshop, SLAC, March 2013

