

Recent Reactor-Based Measurements of θ_{13}

David Webber

IceCube Particle Astrophysics Symposium

May 14, 2013

Disclaimer

I am a member of the Daya Bay Collaboration.

Reactor Antineutrino Experiments with 1-2 km baselines are sensitive to θ_{13} $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & & s_{13}e^{-i\delta} \\ & 1 & & \\ -s_{13}e^{i\delta} & & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ & & 1 \end{pmatrix} \begin{pmatrix} e^{ia_1/2}\nu_1 \\ e^{ia_2/2}\nu_2 \\ & & \\ \nu_2 \end{pmatrix}$ U_{MNSP} Matrix $c_{ij} = cos(\theta_{ij});$ $P_{
m sur} pprox 1 - \sin^2 2 heta_{13} \sin^2 \left(\Delta m_{32}^2 rac{L}{\Delta F}\right)$ Maki, Nakagawa, Sakata, Pontecorvo $s_{ij} = sin(\theta_{ij});$ $-\sin^2 2\theta_{12}\cos^4 2\theta_{13}\sin^2\left(\Delta m_{21}^2\frac{L}{AF}\right)$ Survival probability P_{sur} KamLAND $\Delta m_{32}^2 \approx \Delta m_{31}^2 \approx \Delta m_{atm}^2$ Daya Bay **Near Sites** Daya Bay Far Site Why measure θ_{13} ? • (was) Least-known mixing angle Since the other mixing • Access to v mass hierarchy 0.4 parameters were known, could • Access to CP-violating phase δ optimize baselines for θ_{13} 0.2 0.1 100 10 3 Mean distance from reactor cores L [km]

The Reactor Neutrino Flux and Spectrum

- ²³⁵U, ²³⁹Pu, ²⁴¹Pu from β measurements
- ²³⁸U calculated
- Time dependence due to fuel cycle
- Other contributions: spent fuel, nonequilibrium

Modified from slide by R. McKeown

Inverse beta decay has a distinctive signature

Inverse β-decay (IBD):

$$\overline{\nu}_e + p \to e^+ + n$$

$$\downarrow \\ n + Gd \to x^{x+1} Gd + \gamma$$

Prompt positron:

Carries antineutrino energy $E_{e^+} \approx E_v - 0.8 \text{ MeV}$

Delayed neutron capture:

Efficiently tags antineutrino signal

Prompt + Delayed coincidence provides distinctive signature

Detectors are optimized for inverse beta decay observation

Daya Bay Experiment Site

6 commercial reactor cores with 17.4 GW_{th} total power.

6(8) Antineutrino Detectors (ADs) give 120(160) tons total target mass.

Via GPS and modern theodolites, relative detector positions are known to 3 cm.

RENO Experimental Setup

Seon-Hee Seo

Double Chooz experiment

Chooz Reactors 4.27GW_{th} x 2 cores

Near Detector L = 400m 10m³ target 120m.w.e. 2013 ~

Far Detector L = 1050m 10m³ target 300m.w.e. April 2011 ~

Antineutrino (IBD) Selection

Prompt + Delayed Selection (DayaBay)

- Reject Flashing Photomultiplier Events
- Prompt Positron: 0.7 MeV $< E_n < 12$ MeV
- Delayed Neutron: 6.0 MeV < $\dot{E_d}$ < 12 MeV
- Capture time: 1 μ s < Δ t < 200 μ s
- Muon Veto:

Pool Muon (12 PMTs): Reject 0.6 ms AD Muon (>20 MeV): Reject 1 ms AD Shower Muon (>2.5GeV): Reject 1 s

- Multiplicity:

Background: Accidentals

Accidentals: Two uncorrelated events 'accidentally' passing the cuts and mimic IBD event.

Rate and spectrum can be accurately predicted from singles data.

Multiple analyses/methods estimate consistent rates.

	EH1-AD1	EH1-AD2	EH2-AD1	EH3-AD1	EH3-AD2	EH3-AD3
Accidental rate(/day)	9.73±0.10	9.61±0.10	7.55±0.05	3.05±0.04	3.04±0.04	2.93±0.03
BG/Signal	1.5%	1.4%	1.2%	3.9%	3.9%	3.9%

Background: Fast neutrons

Correlated events mimic IBD events

Fast Neutrons

Energetic neutrons produced by cosmic rays (inside and outside of muon veto system)

Mimics antineutrino (IBD) signal

Prompt: Neutron collides/stops in target Delayed: Neutron captures on Gd

Analysis muon veto cuts control BG/Signal: 0.06% (0.1%) of far (near) signal.

5/14/2013

Background: Li/He decay

Correlated events mimic IBD events

- prompt: β-decay
- delayed: neutron capture

⁹Li→⁹Be+e⁻+
$$\overline{v}_e$$

↓ n +2α

Generated by cosmic rays, long-lived

⁹Li: τ_{γ_2} = 178 ms, Q = 13. 6 MeV

⁸He: $\tau_{\frac{1}{2}}$ = 119 ms, Q = 10.6 MeV

⁹Li/⁸He, Br(n) = 48% /12%, ⁹Li dominant

fit with known decay times for ⁸He/⁹Li

Analysis muon veto cuts control B/S to ~0.3% (0.4%) of far (near) signal.

5/14/2013

Antineutrino Rate vs. Time

Daya Bay 13

Detected rate strongly correlated with reactor flux expectations.

Predicted Rate:

- Normalization is determined by data fit.
- Absolute normalization is within a few percent of expectations.

Observed Daily IBD Rate

- Solid line is predicted rate from the neutrino flux calculation.
- Observed points have very good agreement with prediction.
- It's the accurate flux measurement.

Seon-Hee Seo

CHE BOZ

observed vs expected rate...

next: plot observed vs expected IBD rate per day Anatael Cabrera @NuTel 2013

Wednesday, 13 March 13

Anatael Cabrera (CNRS-IN2P3 & APC)

Far vs. Near Comparison

Compare the far/near measured rates and spectra

Estimate θ_{13} using measured rates in each detector.

Recent θ_{13} Results

RENO, NuTel2013

two independent measurements of $\theta_{13...}$

rate+shape analysis \rightarrow clear θ_{13} E/L pattern & BG constrains

DC-II(Gd): $\sin^2(2\theta_{13})=0.109\pm0.04 \ [0.030^{\text{stat}}\pm0.025^{\text{syst}}]$ **DC-II(H):** $\sin^2(2\theta_{13})=0.097\pm0.05 \ [0.034^{\text{stat}}\pm0.034^{\text{syst}}]$

Anatael Cabrera (CNRS-IN2P3 & APC)

Wednesday, 13 March 13

37

Summary of **Ongoing work**

- Daya Bay
 - Running with 8 detectors since October 2012
 - Working on Rate + Shape analysis for θ_{13}
 - Expected precision on $\sin^2 2\theta_{13}$ of ~0.004 (prelim.)
 - Independent determination of Δm^2 (~10% \rightarrow ~4%)
 - Neutrino flux prediction & absolute measurement
 - Neutrino flux spectral shape measurement
- RENO •
 - Rate + Shape analysis
 - Reduce systematic uncertainty on $\sin^2 2\theta_{13}$ to < 0.01
 - Goal: total uncertainty < 0.011 after 3 years
- **Double Chooz**
 - Near detector (systematics $2.2\% \rightarrow 0.6\%$)
 - Improving all analyses
 - Expected precision on $\sin^2 2\theta_{13}$ of 0.01

Thanks and Stay Tuned!

Backup

Daya Bay near site layout

Photo by Roy Kaltschmidt

D. M. Webber

engineer's view

Double-Chooz Detector

MC's view

our favourite view... Anatael Cabrera @NuTel 2013

Wednesday, 13 March 13

RENO Detector

- 354 ID +67 OD 10" PMTs
- Target : 16.5 ton Gd-LS, R=1.4m, H=3.2m
- Gamma Catcher: 30 ton LS, R=2.0m, H=4.4m
- Buffer: 65 ton mineral oil, R=2.7m, H=5.8m
- Veto : 350 ton water, R=4.2m, H=8.8m

Seon-Hee Seo

Near/far measurements reduce systematic uncertainties

Absolute Reactor Flux:

Largest uncertainty in previous measurements

Relative Measurement:

Multiple detectors removes absolute uncertainty

Far/Near v_e Ratio

5/14/2013

First proposed by L. A. Mikaelyan and V.V. Sinev, Phys. Atomic Nucl. 63 1002 (2000)

Data Set Summary

> 200k antineutrino interactions!

	AD1	AD2	AD3	AD4	AD5	AD6
Antineutrino candidates	69121	69714	66473	9788	9669	9452
DAQ live time (day)	127.5470		127.3763	126.2646		
Efficiency	0.8015	0.7986	0.8364	0.9555	0.9552	0.9547
Accidentals (/day)	9.73±0.10	9.61 ± 0.10	7.55 ± 0.08	3.05 ± 0.04	3.04 ± 0.04	2.93 ± 0.03
Fast neutron (/day)	0.77 ± 0.24	0.77 ± 0.24	0.58 ± 0.33	0.05 ± 0.02	0.05 ± 0.02	0.05 ± 0.02
⁸ He/ ⁹ Li (/day)	2.9 ± 1.5		2.0 ± 1.1		0.22 ± 0.12	
Am-C corr. (/day)			0.2 ± 0.2			
$^{13}C(\alpha, n)^{16}O(/day)$	0.08 ± 0.04	0.07 ± 0.04	0.05 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02
Antineutrino rate (/day)	662.47 ±3.00	670.87 ±3.01	613.53 ±2.69	77.57 ±0.85	76.62 ±0.85	74.97 ±0.84

Consistent rates for side-by-side detectors

Uncertainty currently dominated by statistics

Systematic Uncertainties

	Detector		
	Efficiency	Correlated	Uncorrelated
Target Protons		0.47%	0.03%
Flasher cut	99.98%	0.01%	0.01%
Delayed energy cut	90.9%	0.6%	0.12%
Prompt energy cut	99.88%	0.10%	0.01%
Multiplicity cut		0.02%	< 0.01%
Capture time cut	98.6%	0.12%	0.01%
Gd capture ratio	83.8%	0.8%	< 0.1%
Spill-in	(105.0%)	1.5%	0.02%
Livetime	100.0%	0.002%	<0.01%
Combined	78.8%	1.9%	0.2%

Reactor					
Correlated		Uncorrelated			
Energy/fission IBD/fission	0.2% 3%	Power Fission fraction Spent fuel	0.5% 0.6% 0.3%		
Combined	3%	Combined	0.8%		

A consistent picture of θ_{13}

 $R = 0.944 \pm 0.007 \text{ (stat)} \pm 0.003 \text{ (syst)}$ $\sin^2 2\theta_{13} = 0.089 \pm 0.010 \text{ (stat)} \pm 0.005 \text{ (syst)}$

(preliminary) 2x statistics of PRL, improved BG, calib R = 0.929 \pm 0.006 (stat) \pm 0.009 (syst) sin²2 θ_{13} = 0.100 \pm 0.010 (stat) \pm 0.015 (syst)

Energy-dependent fit, including shape $sin^2 2\theta_{13} = 0.109 \pm 0.04$ (total)