DOMs and the DAQ Demystified Part II: DAQ, Triggers, Filters, and more

John Kelley UW-Madison

IceCube Bootcamp, 2012-06-13

with thanks to Dave Glowacki, Naoko K. Neilson, Erik Blaufuss

Data flow and reduction

DAQ (Data Acquisition System)

- DOMs generate hits: PMT waveform(s) + a timestamp
- We don't want to (and can't) save every hit from every DOM
- The DAQ forms triggers when a pattern of hits looks interesting
 - many definitions of "interesting": muons, cascades, air showers, monopoles...
- Individual triggers are combined into a global readout window, or "event"

Trigger Types

- Simple Multiplicity Trigger (SMT)
 - N HLC hits or more in a time window
 - Example: InIce SMT8 with N_hits ≥ 8 in 5 μs
 - readout window around this captures early and late hits (-4 μs, +6 μs)
- **String** trigger (a.k.a. Cluster trigger in DAQ-land)
 - N hits of M DOMs on a string in a time window
 - Example: 5 hits from a run of 7 adjacent DOMs in a time window of 1500 ns
- **Volume** trigger (a.k.a Cylinder trigger in DAQ-land)
 - simple majority of HLC hits (SMT4) with volume element including one layer of strings around a center string
 - cylinder height is 5 DOM-layers (2 up and down from the selected DOM).
- **Slow Particle trigger (SLOP)**
 - slow-moving hits along a track
 - lengths of the order of 500µs and extending up to milliseconds
- Fixed Rate trigger, Minimum Bias trigger, Calibration trigger

Trigger rate example

Trigger	Rate (Hz)
InIce SMT8	2113
DeepCore SMT3	256
SLOP	13.3
FRT	0.0333
String	2240
Volume	3727
MinBias	59.4

DAQ InIce trigger rates from Run 120029

Trigger Readout

Example global trigger

Real data from 2011

(trigger time, trigger length) in ns

Trigger rate example

Trigger	Rate (Hz)
Inice SMT8	2113
DeepCore SMT3	256
SLOP	13.3
FRT	0.0333
String	2240
Volume	3727
MinBias	59.4

Event rate from Run 120029: 2742 Hz

SNDAQ

- IceCube can also detect nearby supernovae: detection method very different
- The Supernova DAQ runs in parallel to the "normal" DAQ after the StringHubs
- Collects noise rates vs. time for all in-ice DOMs
 - looks for global rise in noise rates across detector
 - sends alerts over Iridium satellite constellation to SNEWS
 - pages members of the collaboration

Online Filtering

- DAQ "raw" output: almost 1 TB/day
 - recall: vast majority of these are cosmic-ray muons
- TDRSS (satellite) bandwidth allocation for IceCube: 105 GB/day
- Options:
 - wait until we can fly the tapes out (what if there's a problem with the data?)
 - run filtering online to look for interesting events; send subset of data over satellite

- Bonus! Can trigger other experiments for near-real-time followup
 - optical followup alerts to ROTSE
 - gamma-ray followup alerts to MAGIC

What is a filter?

- A **filter** is the first stage of analysis that looks for a type of physics event at SPS, to send over the satellite
- Each working group proposes its own filter: muon, cascade, etc.
- The filters are run by **PnF**, which calibrates and cleans the data, looks for events containing triggers that the filters are interested in
 - fast, first-guess algorithms run on most events
 - loose "quality cuts" throw away the junk
- PnF then farms the events out to a computer cluster at pole

Processing and Filtering (PnF)

Filter Examples (not exhaustive!)

- Muon filter
 - hit cleaning -> calibration -> pulse extraction -> fast track reconstruction -> direction-dependent quality cuts
- Cascade filter
 - events that look more blob-like than track-like (tensor of inertia ratio)
- EHE filter
 - high-energy events (total NPE)
- Sun & Moon filter
 - events coming from current Sun and Moon position (WIMPs, moon shadow)
- IceTop filter
 - quality air shower events (also: in-ice coincidences)
- quite a few others for specific analyses

Muon Filter Passing Rate (simulation)

SuperDST

- Basic idea: send highly compressed version of almost every triggered event
 - send reconstructed pulses, not raw waveforms
- Extension of Data Storage and Transfer format previously used in IceCube
- New for 2012; can replace a number of other filters

all you need for many events!

J. van Santen

SuperDST reconstructed waveforms

Raw payload: 4394 bytes

SuperDST: 414 bytes

Triggering, Filtering, and Transmission Board

- How to balance needs of everyone wanting:
 - special DAQ trigger
 - special physics event filter
 - lots of satellite bandwidth
- TFT board reviews proposals once a year
- Wiki is a good place to start for trigger / filter descriptions
 http://wiki.icecube.wisc.edu/index.php/Trigger Filter Transmission Board

Experiment Control and I3Live

Another look at I3Live

Some sources for more information

Previous years' boot camp presentations:

http://wiki.icecube.wisc.edu/index.php/Bootcamp

I3Live documentation:

https://live.icecube.wisc.edu/doc/main/

TFT proposals:

http://wiki.icecube.wisc.edu/index.php/Trigger_Filter_Transmission_Board

SuperDST:

http://wiki.icecube.wisc.edu/index.php/SuperDST https://events.icecube.wisc.edu/indico/contributionDisplay.py?contribId=140&sessionId=4&confId=33

Supernova DAQ:

http://wiki.icecube.wisc.edu/index.php/Supernova

Monitoring:

http://wiki.icecube.wisc.edu/index.php/Monitoring

Problem DOMs:

http://wiki.icecube.wisc.edu/index.php/Problem_DOMs