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Muon Energy Loss
4 27. Passage of particles through matter
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Fig. 27.1: Stopping power (= 〈−dE/dx〉) for positive muons in copper as a
function of βγ = p/Mc over nine orders of magnitude in momentum (12 orders
of magnitude in kinetic energy). Solid curves indicate the total stopping power.
Data below the break at βγ ≈ 0.1 are taken from ICRU 49 [4], and data
at higher energies are from Ref. 5. Vertical bands indicate boundaries between
different approximations discussed in the text. The short dotted lines labeled
“μ− ” illustrate the “Barkas effect,” the dependence of stopping power on projectile
charge at very low energies [6].

27.2.2. Stopping power at intermediate energies :
The mean rate of energy loss by moderately relativistic charged heavy particles,

M1/δx, is well-described by the “Bethe-Bloch” equation,
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It describes the mean rate of energy loss in the region 0.1 <∼ βγ <∼ 1000 for
intermediate-Z materials with an accuracy of a few %. At the lower limit the
projectile velocity becomes comparable to atomic electron “velocities” (Sec. 27.2.3),
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Photon Model
Model light from point sources or from finite extended sources
(possibly stacking to an infinite muon), taking into account ice
layering, etc.
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Track Description

Muon loses energy by continuous ionization processes (steady
Cerenkov emission) and by stochastic processes (bremsstrahlung,
photonuclear processes etc. – pointlike emission)
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Photorec

“Lightsaber” model: constant energy loss muon overlaid with
cascades every meter. Calculate 〈dE/dx〉 by scaling up table to
maximum likelihood fit to data

→ constant energy loss and cascades scale with muons.

MuE
Most other IceCube energy reconstructions (e.g. MuE) work the
same way, but with different ice parameterizations
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Track segmentation
Losses from each cascade are stochastic, so they should scale
independently. Muon-like losses are also not constant. So we break
the track up into segments – every few meters place a cascade and
muon segment.

Solving for all of these independently gets us:
I Starting/stopping/contained tracks
I Hybrid reconstruction
I Taus
I High-energy stochastics
I Better energy measurement
I Better particle ID
I Reconstruction quality cut
I Cascade detection
I Bundle multiplicities
I High-energy tests of QED
I ...
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Simple Approach

I Divide detector
into cylindrical
segments centered
on the track

I Apply
Photorec/MuE
algorithm in these
sub-detectors

I Usually estimate
muon energy by
dropping large
stochastics

Implementations

IceCube: Truncated Energy, DDDDR
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Complicated Approach (Millipede)
Observed photon distributions in each OM are a linear combination
from all sources, with distributions from photon MC tables or
parametrizations and normalizations from the energy loss at that
source.
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Unfolding Stochastics

We can deconvolve the stochastic losses by solving the linear
system:

B1(x1) B2(x1) · · · Bn(x1)
B1(x2) B2(x2) · · · Bn(x2)

...
. . .

...
B1(xm) B2(xm) · · · Bn(xm)




E1

E2
...
Em

 =


N1

N2
...

Nm



Bi : predicted photon distributions from each muon segment and
shower
Ei : energy loss at each muon segment/shower
Ni : measured photon counts
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Defining the data vector

Simplest case: use absolute amplitudes in each OM (very fast)

Complicated case: make a charge histogram in time, fit amplitudes
in each bin (somewhat slower)
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High Energy Performance
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Differential Energy Reconstruction of 5 PeV Muon in IC-86

Total Reconstructed Energy Loss: 108.8 TeV
Total True Energy Loss: 107.9 TeV

Monte Carlo Truth
Reconstructed

I ≈ 1% energy deposition resolution at 1 PeV

I Cascade position resolution ≈ a few meters

I Excellent event topology reconstruction
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Low Energy Performance
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Mean: 0.09
Sigma: 0.40

Primary energy

J. P. Yañez, DESY

I ≈ 40% energy deposition resolution at 20 GeV

I Track length to ≈ 10 meters
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Estimating Eµ from topology

I High Energies
(Uncontained)

I Likelihood Fit to Event
Topology (P(E ,E ′))

I Provides much
higher-quality fit to
muon energy, since
more information
available

I Work in Progress

I Low Energies (Contained)
I Detector a calorimeter:

Add energies
I Excellent energy

resolution (∼ 10%),
even approaching the
detector threshold
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Unconventional Uses

I Misreconstruction
rejection (right)

I Cascade
identification

I Muon Bundle
Reconstruction by
dE/dX profile
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Overview

I Scalar Algorithms
I Fast, simple, µ

energy
I MuE, Photorec

I Pseudo-Scalar
Algorithms

I Better µ
energy

I Truncated
Energy,
DDDDR

I Full Segmented
Algorithms

I High-precision
event topology

I MuE-X,
Millipede
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