MANTS - Sept. 24 2011

Systematic challenges in neutrino analysis

Anne Schukraft RWTH Aachen University

Deutsche Telekom Stiftung

Bundesministerium für Bildung und Forschung

Diffuse and atmospheric V _ samples

Well understood channel

High purity samples

High statistics samples

Analysis principle

Likelihood analysis

 N_{c} = number of conventional atmospheric neutrinos.

Outline

A small selection of interesting topics:

Atmospheric neutrino fluxes

Background rejection

Neutrino event selection

Hit clusters at neutrino level

Hit clusters at neutrino level

10

"Clustered event categories"

Look at the > 1 cluster events in the burnsample with the event viewer

Studied 157 events by eye (out of 2000 burnsample events)

These events are not in our simulation, yet! 11

Hit clusters at neutrino level II

Zenith distribution in IC40

Both samples show:

- Underfluctuation between 110 $^\circ$ < θ < 140 $^\circ$
- Overfluctuation at the horizon

Zenith distribution in IC59

Same (significant!) features in IC59

Improvements in neutrino simulation

Updated zenith distribution

No significant structures after neutrino simulation update.

Our lesson:

Small changes to the simulation software can have a huge impact on high level distributions

Ice model uncertainties?

COGZ [m]

lce in our simulation chain

Flasher tests

normalized SPICE1 0.04 SPICE Mie 0.03

0.05

Flashing String 63 DOM 27 facing String 70 DOM 27 holeice 1e10 photons SHIFTED ice model comparison

146.8 0.7548 ± 0.01626 0.02 3769 ± 0.03253 0.01 900 1000 500 600 700 800 1100 1200 time [in nanoseconds]

AHA

Spice

Spice

A full circle test: compare measured and

different ice models

Data

simulated flasher timing distributions for

824.1 150.7 12593

15185

856.5 159.7 .02631 .05262

24492 847.6 153.4 .01784 .03567

Chi Squared shifted plot - String 63 facing across to String 70 AHA Chi Squared Shifted 40 E SPICE1 35 SPICE Mie 30 E 25 20 15 10 bottom 20 30 40 60 top 10 50 DOM number

SPICE Mie describes data best

- only if varaible time shift (~ 100ns) allowed!

Calculate χ^2 for timing distributions in dependence of depth

SPICE Mie shows best agreement over all depths

Sarah Bouckoms

High level impacts

How to implement this in analysis

"Discrete approach"

"Fitting approach"

Parametrize the influence on pdfs

$$\mathcal{L} = \mathcal{L}(N_a, N_p, N_c) \longrightarrow \mathcal{L}(N_a, N_p, N_c, \epsilon)$$

Simulate a whole grid of datasets with varied parameters

Repeat analysis for every dataset

Choose e.g. the most conservative limit as default

Constrain the uncertainty

$$\mathcal{L} = \left(\prod \frac{\mu_{ij}^{n_i j}}{n_{ij}!} \cdot e^- \mu_{ij} \right) \cdot e^{-\frac{1}{2} \frac{(\epsilon - \epsilon_0)^2}{\Delta \epsilon}}$$
²⁵

Atmospheric neutrino fluxes

The fluxes at our energies are only extrapolated from lower energy measurements

How reliable are these predictions?

Seasonal variations

Pions and Kaons

The flux expectations Bartol/Honda are extrapolated from measurements at energies < 1 TeV.

The Kaon/Pion ratio

Another good candidate to be implemented as a free systematic fit parameter in the likelihood function!

The neutrino knee

A first hint on a knee in atmospheric neutrinos?

A knee in cosmic rays is not included in our atmospheric neutrino MC, yet.

A cosmic ray knee makes us more sensitive to an astrophysical flux. Simulating a "simple knee" (spectrum steepening at fixed energy)

Visible in our reconstructed energy distribution

Impact on diffuse analysis

Strategy:

Recalculate the nucleon flux from the Honda neutrino flux

Build ratios between Honda nucleon flux and different cosmic ray flux parameterizations

Reweight the Honda neutrino flux with a "knee factor"

Change in sensitivity compared to no-knee Honda2006

Bindig	et	al.	(18%)

Gaisser et. al. (14%)

Hoerandel et al. (15%)

Significant impact!

Cumulative event distribution (e.g. Hoerandel model)

Different sources for uncertainties: Detector, software, simulation, theory

Those systematics can be identified and taken into account in analysis

Working hard to have systematics under control for our first neutrino discovery!