

The Anisotropy of TeV Cosmic Rays: An interpretation

Tolya Erlykin (1) and Arnold Wolfendale (2)

- 1. Lebedev Physical Institute, Moscow, Russia.
- 2. Durham University, Durham, UK.

Scope of the Lecture

- Dipole Anisotropy', in its historical setting.
- Likely trend at post -100 TeV energies.
- Possible 'fine-structure' at TeV energies

Data to 2006 - amplitude of 1st harmonics

Data to 2006 – phases of 1st harmonics

Longtitude of Flux magnitude from SNR (random) calculations (EW, 2006)

Conclusions at this stage

Rough consistency of the measurements

 Slow changes of amplitude and phase (of the 1st harmonic) with increasing energy

Comparison with expectation

 Amplitudes: Good below 10 TeV but smaller than expected above

Phases: See next figure.

Some important directions. X, I and O: CR TeV energies

Caption continued

- GC: Galactic Centre; GAC : Galactic Anticentre
- Upwind and Down-wind; Local Interstellar Medium, out to about 10pc (Frisch, 2003)
- IBEX: Solar System interacting with the local ISM (McComas et al., 2009 etc.) Pole (and anti-Pole) of symmetry.
- B₁, B₂ ...field directions to 200, 500...pc
 (Kiraly et. al., 1979)

Comments

- Larmor radius of 20TeV proton in the ISM is ~1300AU (7.10⁻³pc) <u>but</u> the diffusive scattering length is ≈ 2–10pc; thus ≈ distance to the nearest stars.
- > 2. By extrapolation from lower energies, anisotropy amplitude due to Solar System effects should be quite negligible ($\simeq 10^{-6}$).
- 3. Phase of first harmonic not far from 'Down-wind', B₁', 'IBEX anti-pole'.

Trend of anisotropy with increasing energy

- Amplitudes are falling and phases are changing.
- Above 10s of TeV, random SNR model predicts big changes occasionally (EW, 2006 and others) – due to 'local' SNR.
- Eventually, changes in mass composition will reduce the amplitude (Kiraly et.al, 1979 and others).

Fine structure in the anisotropy maps.

- 1. When anisotropy maps have 1st (and 2nd) harmonic patterns removed, structure remains.
- > 2. Is it genuine? Striations in ICECUBE data.
- 3. If so, what is it's source?
- 4. Detailed examination of many maps (Xrays, radio etc.) fails to identify the source.

Magnetic Irregularities

Perhaps CR studies alone can elucidate?

- If λ (scatt.) ~ 2pc and the mean relevant distance is a few times this, then the measured angular scale (20°) can be understood.
- But as E goes up we go further out and the angular scale will fall.

Time dependence of the anisotropies

A weak shock in the ISM of 50kms⁻¹ corresponds to 5.10⁻⁵ pc/year. Surely too small to have an effect?

Instrumental effects?

Conclusions

▶ 1. Streaming direction roughly understood

 Fine structure uncertain both experimentally and theoretically.

▶ 3. The topic is an exciting one.

