

Anisotropy of TeV cosmic rays in IceCube and IceTop

Marcos Santander

University of Wisconsin-Madison

- Cosmic rays & IceCube
- Large scale and small scale anisotropy
- Anisotropy at high energies with IceCube
- Preliminary anisotropy results from IceTop

Cosmic rays in IceCube

Muon event in IceCube

Large scale anisotropy with IceCube

- $\sim 10^{-3}$ anisotropy observed in the South
- Good match to observations in the North

HealPix map Equal area pixels (~ 0.9° spacing)

- IC59 data (5.6 x 10¹⁰ events, 20 TeV)
- N_i events in the ith pixel
- (N_i) expected number of events for an isotropic sky (24 hr time scrambling)
- Relative intensity:

$$\frac{\Delta N_i}{\langle N \rangle_i} = \frac{N_i(\alpha, \delta) - \langle N_i(\alpha, \delta) \rangle}{\langle N_i(\alpha, \delta) \rangle}.$$

> Relative intensity map is **not isotropic** (IC 22 large scale structure)

Power spectrum

Dipole and quadrupole subtraction

$$\begin{split} \delta I(\alpha,\delta) &= m_0 & \text{monopole} \\ &+ p_x \cos \delta \cos \alpha + p_y \cos \delta \sin \alpha + p_z \sin \delta & \text{dipole} \\ &+ \frac{1}{2} Q_1 (3\cos^2 \delta - 1) + Q_2 \sin 2\delta \cos \alpha + Q_3 \sin 2\delta \sin \alpha + Q_4 \cos^2 \delta \cos 2\alpha + Q_5 \cos^2 \delta \sin 2\alpha & \text{quadrupole} \end{split}$$

Significances are pre-trial

Significances are pre-trial

M. Santander - Cosmic Ray Anisotropy Workshop , Madison, October 2011

Significances are pre-trial

Significances are pre-trial

Smoothing scan results

region	right ascension	declination	optimal scale	peak significance	post-trials
1	$(122.4^{+4.1}_{-4.7})^{\circ}$	$(-47.4^{+7.5}_{-3.2})^{\circ}$	22°	7.0σ	5.3σ
2	$(263.0^{+3.7}_{-3.8})^{\circ}$	$(-44.1^{+5.3}_{-5.1})^{\circ}$	13°	6.7σ	4.9σ
3	$(201.6^{+6.0}_{-1.1})^{\circ}$	$(-37.0^{+2.2}_{-1.9})^{\circ}$	11°	6.3σ	4.4σ
4	$(332.4^{+9.5}_{-7.1})^{\circ}$	$(-70.0^{+4.2}_{-7.6})^{\circ}$	12°	6.2σ	4.2σ
5	$(217.7^{+10.2}_{-7.8})^{\circ}$	$(-70.0^{+3.6}_{-2.3})^{\circ}$	12°	-6.4σ	-4.5σ
6	$(77.6^{+3.9}_{-8.4})^{\circ}$	$(-31.9^{+3.2}_{-8.6})^{\circ}$	13°	-6.1σ	-4.1σ
7	$(308.2^{+4.8}_{-7.7})^{\circ}$	$(-34.5^{+9.6}_{-6.9})^{\circ}$	20°	-6.1σ	-4.1σ
8	$(166.5^{+4.5}_{-5.7})^{\circ}$	$(-37.2^{+5.0}_{-5.7})^{\circ}$	12°	-6.0σ	-4.0σ

Abbasi et al., ApJ, 740, 16, 2011 arxiv/1105.2326

Milagro + IceCube combined skymap

Milagro median energy $\sim 1 \text{ TeV}$

Abdo, A. A., et al. 2008, Phys. Rev. Lett., 101, 221101

Anisotropy at high energies - IceCube

- Cut on number of triggered
 DOMs and on reconstructed
 zenith angle
- Final sample: 6.1 x 10⁸ events
- Median energy: 400 TeV

Abbasi et al., submitted to ApJ, arxiv/1109.1017

Anisotropy at high energies - IceCube

- Optimal smoothing of **21°**
- Strength of ~10⁻³
- Minimum significance: -8.6σ
 (-6.3σ post-trial)

Abbasi et al., submitted to ApJ, arxiv/1109.1017

Comparison to low energies

- The anisotropy changes phase
- Similar peak-to-peak strength
- Smaller characteristic size at high energies

- 81 stations
 - 2 tanks per station
 - 2 DOMs per tank (hi gain, low gain)

PRELIMINARY

IT59 dataset

#	Events	

IT stations > 3	117 x 10 ⁶	All
$3 \leq stations < 8$	87 x 10 ⁶	Low E
stations ≥ 8	30 x 10 ⁶	High E

PRELIMINARY

- 117 x 10⁶ events
- 500 TeV median energy
- Minimum significance: -6.2 σ
 (pretrial)

- 87 x 10⁶ events
- 400 TeV median energy
- Minimum significance: **-5.1 σ** (pretrial)
- 30 x 10⁶ events
- 2 PeV median energy
- Minimum significance: -4.9 σ
 (pretrial)

PRELIMINARY

 $\sigma(\Delta N / \langle N \rangle) \times [10^{-3}]$

$\Delta N / \left< N \right> \times [10^{-3}\,]$

- Anisotropy observed with IceCube:
 - Wide angular scale range (10°-180°)
 - Strength in the **10⁻⁴-10⁻³** range
 - Different energies: 20 TeV to 400 TeV
- 20 TeV anisotropy matches that observed in the North
- Observation of anisotropy at 400 TeV (change in phase, size compared to 20 TeV)
- Preliminary results from IceTop at 400 TeV are consistent with IceCube results
- Anisotropy observed at 2 PeV (near the CR knee) change in composition?
- Origin of the anisotropy still unknown

Backup slides

IC59 results

- Optimal integration radius ~ 0.79°
- Significance at 0.79° (~ -11.8σ)
- Gaussian fit gives 1σ width of 0.61° +/-0.05°
- Looks clean in unbinned analysis too

IceTop 59 – Low E

M. Santander - Cosmic Ray Anisotropy Workshop , Madison, October 2011