

Cosmic Ray Anisotropy Workshop 2011

28-29 October 2011

University of Wisconsin Pyle Center

The Elemental Composition of Galactic Cosmic Rays

Jörg R. Hörandel Radboud University Nijmegen

http://particle.astro.ru.nl

Cosmic Ray Anisotropy Workshop 2011

28-29 October 2011

Ur versity of Wisconsin Pyle Center

The Elemental Composition of Galactic Cosmic Rays

Are we about to change some paradigms of cosmic-ray astrophysics?

Jörg R. Hörandel Radboud University Nijmegen

http://particle.astro.ru.nl

KASCADE & KASCADE-Grande anisotropy upper limits

KASCADE: 200 m x 200 m, 10⁸ events (data 1998-2002) 9 more years of data KASCADE-Grande: ~0.5 km² (data 2004-2007)

S. Over et al., 30 ICRC 4 (2007) 223

Cosmic Ray Anisotropy Worksh pp 201

8-29 October 2011

versity of Wisconsin Pyle Center

The Elemental Composition of Galactic Cosmic Rays

Are we about to change some paradigms of cosmic-ray astrophysics?

Jörg R. Hörandel Radboud University Nijmegen

http://particle.astro.ru.nl

TRACER: Energy spectra for individual elements

P. Boyle et al., ICRC 2011

A. Obermeier ApJ in press, arXiv:1108.4838

TRACER: propagation of cosmic rays

Leaky-Box Propagation Parameters

► Continuity equation:

$$N_i(E) = rac{1}{\Lambda_{esc}(E)^{-1} + \Lambda_i^{-1}} imes \left(rac{Q_i(E)}{eta c
ho} + \sum_{k>i} rac{N_k}{\lambda_{k
ightarrow i}}
ight)$$

► Source Spectrum:

$$Q_i(E) = n_i \cdot E^{-\alpha}$$

Spallation Path Length:

► Escape Path Length:

$$\Lambda_{esc}(E) = CE^{-\delta} + \Lambda_0$$
 $\Lambda_i = \frac{m}{\sigma(A)}$

Boron to Carbon ratio

$$\frac{N_B}{N_C} = \frac{\lambda_{\rightarrow B}^{-1}}{\Lambda_{esc}(E)^{-1} + \Lambda_B^{-1}}$$

A. Obermeier et al., ICRC 2011

m

TRACER: propaga on of cosmic rais

A. Oben eier et al., ICRC 2011

TRACER: propage on of cosmic rays

TRACER: propagation of cosmic rays

TRACER: propagation of cosmic rays

The Source Spectrum

- ► Fit to TRACER oxygen data.
- ► $\delta = 0.64$, $\Lambda_0 = 0.7$ g/cm²

- Free parameter: α .
- ► Source spectrum: power law.

Result

- Source index: α = 2.37 ± 0.12.
- Agrees with previous results.
- Model predicts spectrum at Earth may not be a power law (Λ₀).

Galprop: $\alpha=2.34$

A. Obermeier et al., ICRC 2011

Cosmic Ray Anisotropy Workshop 201

8-29 October 2011

versity of Wisconsin Pyle Center

The Elemental Composition of Galactic Cosmic Rays

Are we about to change some paradigms of cosmic-ray astrophysics?

Jörg R. Hörandel Radboud University Nijmegen

http://particle.astro.ru.nl

Energy spectra of main elements in cosmic rays

Particle Data Group

Particle Data Group

CREAM: are CR spectra not single power laws?

E. Seo, ICRC 2011

The light component spectrum

Unfolding the energy spectrum by a Bayesian approach QGSJet II + FLUKA + EGS4 + GEANT3 --> 1-300 TeV

Mari S.M. et al. ICRC0220

The all-particle energy spectrum

M. Bertaina, ECRS (2010)

A knee-like structure in the spectrum of the heavy component of cosmic rays

Spectrum and X_{max} from Tunka133

L.A. Kuzmichev [Tunka Coll.], icrc250

V. Prosin [Tunka Coll.], icrc184

Tunka, ICRC (2011)

Electron energy spectrum

Positron-to-Electron fraction

Mocchiutti et al., ICRC 2011

Vandenbroucke et al., ICRC 2011

Positron-to-Electron fraction

Mocchiutti et al., ICRC 2011

Vandenbroucke et al., ICRC 2011

Cosmic Ray Energy Spectra

P and He spectra in different scenarios

- All scenarios are tuned to the data, except the Reference scenario
- Scenarios L and H: the local source component is calculated by the subtraction of the propagated Galactic spectrum from the data
 - The local source is assumed to be close to us, so no propagation; only primary CR species

Moskalenko et al., ICRC 2011

lines: **Poly Gonato** JRH, Astropart. Phys. 19 (2003) 193

overview on models: JRH, Astropart. Phys. 21 (2004) 241 JRH, Adv. Space Res. 41 (2008) 442

Cosmic Ray Anisotropy Workshop 2011

October 2011

University of Wisconsin Pyle Center

n of Galactic Cosmic Rays

