

Probing Neutrino Masses and Mixings with Accelerator (and Reactor) Neutrinos

Mike Shaevitz - Columbia University

IceCube Invites Particle Astrophysics April, 2011

Current Major Neutrino Questions

- What are their masses?
 - Neutrinos have extremely tiny masses. Why?
 - But important contributors to how the universe works.
- Are there more than three types of neutrinos (electron, muon, and tau neutrino)?
 - Could there be new "sterile" type neutrino partners?
 - Are these "sterile" neutrinos the reason that neutrinos are different?
- Neutrinos can change from one type to another
 - What is the pattern (and explanation) of these mixings?
 - Is there CP violation in the mixing? Could this hold the key to the "matter-antimatter" asymmetry in the universe?
- Are neutrinos a new type of matter particle where the particle and antiparticle are the same? (Are neutrinos Majorana fermions?)

Outline

- Introduction to Neutrino Mass and Mixing
- Neutrino Oscillations among $\nu_{e},\,\nu_{\mu}$, and ν_{τ}
 - The "Hunt" for the Little Mixing Angle θ_{13}
 - Plans and Prospects for Measuring CP Violation
- Possible Oscillations to Sterile Neutrinos
 - Current Hints and Anomalies
 - Ideas for Future Searches
- Conclusion

Absolute Mass Scale Determinations

Neutrino Oscillations

The observation of neutrino oscillations where one type of neutrino can change (oscillate) into another type implies:

1. Neutrinos have mass

and

- 2. Lepton number (electron, muon, tau) is not conserved $(\nu_e \rightarrow \nu_\mu, \nu_\mu \rightarrow \nu_\tau, \nu_e \rightarrow \nu_\tau)$
- The phenomena comes about because the mass and flavor states are different as parameterized by a mixing matrix
- Two types of oscillation searches: $P_{Osc} = \sin^2 2\theta \sin^2 (1.27 \Delta m^2 L / E)$
 - Appearance Experiment: Look for appearance of v_e or v_τ in a pure v_u beam vs. L and E
 - Need to know the backgrounds
 - Disappearance Experiment:
 - Look for a change in $\nu_{e\!/\!\mu}$ flux as a function of L and E
 - Need to know the flux/and cross sections

Oscillations Parameterized by 3x3 Unitary Mixing Matrix

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3}e^{i\delta} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$
$$\begin{pmatrix} Flavor \\ Eigenstate \end{pmatrix} = (Mixing Matrix) \begin{pmatrix} Mass \\ Eigenstate \end{pmatrix}$$

Three mass splittings: $\Delta m_{12}^2 = m_1^2 - m_2^2$, $\Delta m_{23}^2 = m_2^2 - m_3^2$, $\Delta m_{31}^2 = m_3^2 - m_1^2$ But only two are independent since only three masses If $\delta \neq 0$, then have CP violation $\Rightarrow P(v_{\mu} \rightarrow v_e) \neq P(\overline{v}_{\mu} \rightarrow \overline{v}_e)$ solar atmospheric Current Measurements: $\Delta m_{12}^2 = 8 \times 10^{-5} \text{ eV}^2$, $\Delta m_{13}^2 \approx \Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ $U = \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta_{CP}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix}$ 3-mixing angles Solar: $\theta_{12} \sim 33^\circ$ $\overset{\text{"Little mixing angle, } \theta_{13} \overset{\text{"Comparison of the matrix of the matr$

Current Oscillation Summary

Manmade Neutrino Sources and Beams

Recent Accelerator $v_{\mu} \rightarrow v_{\tau}$ Measurements: MINOS, OPERA, ICARUS

- Use Pion Decay-in-Flight Beam
 - Produce pions and kaons from accelerator protons (8 800 GeV)
 - Focus mesons towards detector for higher efficiency
 - Fairly pure beam of v_{μ} or $\overline{v_{\mu}}$ neutrinos depending whether you focus π^+ or π^- mesons. $\pi^+(\text{or } K^+) \rightarrow \mu^+ v_{\mu}$
 - Few percent v_e backgrounds

$$\pi^-(\text{or }K^-) \to \mu^- \overline{v_\mu}$$

- Best to use a near detector to measure flux and background \Rightarrow MINOS and most new experiments have near detector

MINOS Accelerator Oscillation Experiment at Fermilab

MINOS v_{μ} **Disappearance Results**

848 CC v_{μ} candidates $\leftarrow \rightarrow$ 1065 \pm 60(syst) no-osc. prediction

Initial MINOS $\overline{\nu}_{\mu}$ Disappearance Results in $\overline{\nu}$ Mode Somewhat Inconsistent with ν Mode \Rightarrow CPT Violation?

OPERA and **ICARUS**: v_{τ} Appearance Search

- Uses 400 GeV protons to produce neutrino beam $\left< E_v \right> \approx 17 \ GeV$
- $\langle E_{\nu} \rangle$ above threshold to produce τ leptons from ν_{τ}
- $\langle L/E \rangle \approx 43$ so oscillation probability for Δm^2_{atm} is small

OPERA: Nuclear Emulsion plus Lead

- Scintillator Strips isolate emulsion brick with an event
- Robot then picks out brick to be scanned.
- Currently running since 2007
- Expect about 15 ν_τ events in 5 years

ICARUS: Liquid Argon TPC 600 Tons

• Will use kinematic reconstruction to isolate v_{τ} -events.

OPERA: Nuclear Emulsion plus Lead

ICARUS: Liquid Argon TPC 600 Tons

- Expect about 15 v_{τ} events in 5 years

Current Global Fits to Solar, Atmospheric, Accelerator, and Reactor Data

parameter	best fit $\pm 1\sigma$	2σ	3σ
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	$7.59^{+0.20}_{-0.18}$	7.24 - 7.99	7.09 - 8.19
$\Delta m^2_{31} [10^{-3} {\rm eV}^2]$	$\begin{array}{c} 2.45 \pm 0.09 \\ -(2.34^{+0.10}_{-0.09}) \end{array}$	2.28 - 2.64 -(2.17 - 2.54)	2.18 - 2.73 -(2.08 - 2.64)
$\sin^2 \theta_{12}$	$0.312\substack{+0.017\\-0.015}$	0.28 - 0.35	0.27 - 0.36
$\sin^2 \theta_{23}$	$\begin{array}{c} 0.51 \pm 0.06 \\ 0.52 \pm 0.06 \end{array}$	0.41 – 0.61 0.42 – 0.61	0.39 - 0.64
$\sin^2\theta_{13}$	$0.010^{+0.009}_{-0.006}\ 0.013^{+0.009}_{-0.007}$	$ \leq 0.027 \\ \leq 0.031 $	$ \leq 0.035 \\ \leq 0.039 $

Big Questions in (3x3) Neutrino Mixing

The Search for the "Little Mixing Angle" (θ_{13})

MINOS and **CHOOZ** Experimental Limits on θ_{13}

Global Fits: $\sin^2 2\theta_{13} < 0.12@95\%CL$

Experimental Methods to Measure the "Little Mixing Angle", θ_{13}

- Long-Baseline Accelerators: Appearance $(v_{\mu} \rightarrow v_{e})$ at $\Delta m^{2} \approx 2.5 \times 10^{-3} \text{ eV}^{2}$
 - Look for appearance of ν_e in a pure ν_u beam vs. L and E
 - Use near detector to measure background v_e 's (beam and misid)

T2K: $<E_v> = 0.7 \text{ GeV}$ L = 295 km

20

- Reactors: Disappearance ($\overline{v_e} \rightarrow \overline{v_e}$) at $\Delta m^2 \approx 2.5 \times 10^{-3} \text{ eV}^2$
 - Look for a change in \overline{v}_e flux as a function of L and E
 - Look for a non- $1/r^2$ behavior of the ν_e rate
 - Use near detector to measure the un-oscillated flux

Double Chooz: $\langle E_v \rangle = 3.5 \text{ MeV}$ L = 1100 m

Long-Baseline Accelerator Appearance Experiments

- Oscillation probability complicated and dependent not only on θ_{13} but also:
 - CP violation parameter (δ)
 - 2. Mass hierarchy (sign of Δm_{31}^2) "Matter Effects"
 - 3. Size of $\sin^2\theta_{23}$

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &+ 4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) \end{split}$$

 \Rightarrow These extra dependencies are both a "curse" and a "blessing"

Reactor Disappearance Experiments

• Reactor disappearance measurements provide a straight forward method to measure θ_{13} with no dependence on matter effects and CP violation

$$P(\overline{v_e} \to \overline{v_e}) = 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{13}^2 L}{4E} + \text{ small terms}$$

Reactor Neutrino Experiments

Reactor Measurements of θ_{13}

How to do better than previous CHOOZ reactor experiment?

- ⇒ Better detectors with reduced systematic uncertainties
- \Rightarrow Larger detectors
- ⇒ Reduce and control backgrounds
- ⇒ Use Near/Far Detectors

Reactor Experiment for Neutrino Oscillations at YoungGwang in Korea

27

Daya Bay Experiment

28

Expected Sensitivities

Expt	σ _{stat} [%]	σ _{syst} rel. [%]	sin²2θ ₁₃ > (90% CL)
Double Chooz	0.5	0.6	0.03
RENO	0.3	0.5	0.02
Daya Bay	0.2	0.4	0.01

Longbaseline v_e **Appearance Experiments**

Longbaseline Experiment: T2K and Nova

T2K and Nova Use Off-axis Neutrino Beam

- Want to maximize neutrino flux at the appearance probability peak
- Narrow spectrum to reduce backgrounds from high energy processes

Sensitivity Estimates for θ_{13} vs Time

Based on M. Mezzetto arXiv:1003.5800

Moving on to Measuring CP Violation

Future Longbaseline Experiments

European Design Study - LAGUNA (Large Apparatus for Grand Unification and Neutrino Astrophysics)

MEMPHYS - MEgaton Mass PHYSics

- $\bullet~$ tanks of 60 m heigth $\times 65~m~\varnothing$
- \sim 440 kt water Cherenkov detector
- GLACIER Giant Liquid Argon Charge Imaging ExpeRiment
 - 20 m heigth ×70 m Ø
 - $\sim 100 \, \text{kt}$ liquid Ar TPC
- LENA Low Energy Neutrino Astronomy
 - 100 m long \times 30 m Ø
 - \sim 50 kt liquid scintillator

38

On-axis Beam used for CP Violation

rates for L = 810 km

30

25

20

39

1st Maximum : Gives the neutrino mass hierarchy 2nd Maximum : Sensitive to CP Violation effects

Sensitivity for Determining Mass Hierarchy and CP

Homestake (DUSEL) Long Baseline Experiment (LBNE)

200 kt WCD detector and 5 yrs of ν + 5 yrs of $\bar{\nu}$ running with 700kW: Mass Hierarchy CP Violation

Other Complications for Conventional LBNE Approach

Long Baseline experiments are usually low in antineutrino statistics \rightarrow a combination of style of beam and cross section

... and the backgrounds are large compared to signal

Decay-at-Rest (or Beam Dump) Neutrino Source

Daedalus Experiment

- Multiple beam sources using high-power cyclotrons
 - Very few $\,\overline{\nu}_e$ produced so can do precise $\,\overline{\nu}_\mu \to \,\overline{\nu}_e$ search
 - For study assume each cyclotron 1 MW at ~0.8 GeV
- Detector is assumed to be 300 kton water Cerenkov detector with gadolinium doping
- Osc signal events are $\overline{v_e} + p \rightarrow e^+ + n$ (Inverse-beta decay) which can be well identified by a two part delayed coincidence (Like reactor experiments)
- Excellent CP sensitivity alone or combined with LBNE v-only running

(Described in Conrad and Shaevitz, PRL 104, 141802 (2010))

Exclusion of δ_{CP} = 0° or 180° at 3 σ

Combined running substantially better than either LBNE or Daedalus alone

(Recent preprint has similar conclusions: Agarwalla,Huber,Link,Mohapatra - http://arxiv.org/abs/1005.4055) **Possible Oscillations to Sterile Neutrinos**

LSND $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Signal

LSND in conjunction with the atmospheric and solar oscillation results needs more than 3 v's \Rightarrow Models developed with 1 or 2 sterile v's

Saw an excess of: $87.9 \pm 22.4 \pm 6.0$ events.

With an oscillation probability of $(0.264 \pm 0.067 \pm 0.045)\%$.

3.8 σ evidence for oscillation.

The MiniBooNE Experiment at Fermilab

- Goal to confirm or exclude the LSND result Similar L/E as LSND
 - Different energy, beam and detector systematics
 - Event signatures and backgrounds different from LSND
- Since August 2002 have collected data:
 - 6.5×10^{20} POT ν
 - 5.7 \times 10^{20} POT $\,\overline{\nu}$

MiniBooNE $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Result

- 5.66E20 POT
- Oscillations favored over background only hypotheses at 99.6% CL (model dependent),
- No assumption made about low energy excess
- Best fit (sin²2θ, Δm²) = (0.0066, 4.42 eV²) χ²/NDF = 11.6/7; Prob.=10.9%

0.30 0.25 Events/MeV 0.20 0.20 0.15 0.10

0.05

0.00

-0.05

-0.10 0.2

0.4

0.6

0.8

1.2

1.4

1.0

3.0

E^{QE} (GeV)

MiniBooNE $\ \overline{\nu}_{\mu} \rightarrow \ \overline{\nu}_{e}$ Result Consistent with LSND $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = (\sin^{2} 2\theta) \sin^{2} (1.27 \Delta m^{2} L / E)$ 0.020 • LSND 0.015 \blacktriangle MB v mode $P\Big(\overline{V}_{\mu} ightarrow \overline{V}_{e} \Big)$ 0.010 0.005 0.000 -0.005L... 0.2 0.4 0.8 0.6 1.2 1.0 1.4 1.6 $L/E_{v}(m/MeV)$

Neutrino mode MB results (2009)

- 6.5E20 POT collected in neutrino mode
- E > 475 MeV data in good agreement with background prediction
 - energy region has reduced backgrounds and maintains high sensitivity to LSND oscillations.
 - A two neutrino fit inconsistent with LSND at the 90% CL assuming CP conservation.
- E < 475 MeV, statistically large (6σ) excess
 - Reduced to 3σ after systematics, shape inconsistent with two neutrino oscillation interpretation of LSND. Excess of 129 +/- 43 (stat+sys) events is consistent with magnitude of LSND oscillations.

Published PRL 102,101802 (2009)

Phenomenology of Oscillations with Sterile Neutrinos (3+1 Models)

• In sterile neutrino (3+1) models, high $\Delta m^2 v_e$ appearance comes from oscillation through v_s

- $\nu_{\mu} \rightarrow \nu_{e}$ = ($\nu_{\mu} \rightarrow \nu_{s}$) + ($\nu_{s} \rightarrow \nu_{e}$)

- This then requires that there be ν_{μ} and ν_{e} disappearance oscillations
 - In the past, constraints on disappearance have restricted any (3+1) models
- Information on appearance and disappearance confusing
 - Differences needed between v versus v disappearance needed
 - But CPT invariance demands neutrino and antineutrino disappearance to be the same.

51

Mixing Angles:
$$U_{e4}, U_{\mu4}, U_{S4}$$

 $U_{e4}^2 + U_{\mu4}^2 + U_{S4}^2 = 1.0$
 $v_{\mu}: (1 - P_{v_{\mu} \to v_{S}}) = (1 - \sin^2 2\theta_{\mu s} \sin^2 (1.27 \Delta m^2 L / E))$
 $\sin^2 2\theta_{\mu s} = 4U_{\mu 4}^2 U_{S4}^2$
 $v_e: (1 - P_{v_e \to v_S}) = (1 - \sin^2 2\theta_{es} \sin^2 (1.27 \Delta m^2 L / E))$
 $\sin^2 2\theta_{es} = 4U_{e4}^2 U_{S4}^2$

MiniBooNE, CDHS, CCFR v_{μ} and v_{μ} Disappearance Limits

- Stringent limits on v_{μ} disappearance from previous experiments
- Less stringent limits for $\overline{\nu}_{\mu}$ Disappearance
- CPT conservation implies v_{μ} and \overline{v}_{μ} disappearance are the same
 - \Rightarrow Restricts application of 3+1 since v_{μ} constrains $\overline{v_{\mu}}$ disappearance.

Reactor Antineutrino Anomaly - $\overline{v_e}$ **Disappearance**

Re-analysis of predicted reactor fluxes based on a new approach for the conversion of the measured electron spectra to anti-neutrino spectra.

- Reactor flux prediction increases by 3%.
- Re-analysis of reactor experiments show a deficit of electron anti-neutrinos compared to this prediction at the 2.14 σ level
- Could be oscillations to sterile with $\Delta m^2 \mbox{^2HeV}^2$ and $sin^2 2\theta \mbox{^0.1}$
 - \Rightarrow Relaxes restriction on 3+1 since now have v_e disappearance

\overline{v} – Only Data: 3+1 Fits with Sterile Neutrinos

- \overline{v} Data from LSND, MiniBooNE, Karmen, Reactor
- Good fits and compatibility for antineutrino only data.
- MiniBooNE v_e appearance and CDHS v_{μ} disappearance do not fit \Rightarrow Need CP (and maybe CPT) violation \Rightarrow 3+2 Model

Global 3+2 Fits with Sterile Neutrinos (Kopp Maltoni and Schwetz, hep-ph:1103.4570)

(Kopp,Maltoni,and Schwetz - hep-ph:1103.4570)

• In 3+2 fits, CP violation allowed so $P(v_{\mu} \rightarrow v_{e}) \neq P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$

• But still hard to fit appearance and disappearance simultaneously

- · Compatibility between data sets better but still not very good
 - LSND+MB(\overline{v}) vs Rest = 0.13%
 - Appearance vs Disappearance = 0.53%

Next Steps

- Search for effects from high Δm^2 sterile neutrinos
 - Address MiniBooNE/LSND $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ appearance signal
- Address MiniBooNE low-energy ν_{e} excess
 - Could be oscillations or something else
- Very short baseline v_{e} and $\,\overline{v_{e}}$ disappearance
- Two detector v_{μ} , \overline{v}_{μ} disappearance

Future Plans and Prospects

Approved program:

- 1. Increase by x2-x3 the MiniBooNE \overline{v} data over the next 2 years \Rightarrow Reach 3 to 4 σ
- 2. New MicroBooNE Exp in front of MiniBooNE (2013) Liquid Argon TPC detector which can address the low-energy excess:

- Reduced background levels
- Can determine if low-energy excess due to single electron or photon events?

Other ideas:

- New two detector experiments for appearance and disappearance
 - At Fermilab using using new detectors in MiniBooNE beamline
 - CERN PS neutrino beam with Icarus style detectors at 130m/850m
- Very short baseline v_e disappearance
 - Use high rate radioactive sources in Borexino detector
 - Small detector close (<10m) to nuclear reactor
 - Decay-at-rest beam close to a large detector (Nova, LAr_1kton)

Final Comments

- Reactor and longbaseline experiments will be soon providing new information on $\theta^{}_{13}$
 - θ_{13} is a important physics parameter for modeling v mixing
 - θ_{13} is key for planning future long-baseline experiments to measure CP violation and the mass hierarchy
- Next generation longbaseline experiments have the promise to give information on the mass hierarchy and CP violation if $\sin^2 2\theta_{13} > -0.01$
- There are a number of results and hints that suggest that there may be oscillations to sterile neutrinos at the $\Delta m^2 \sim 1 \text{ eV}^2$ level
 - Further running and new experiments are being planned to address this possibility

⇒ Exciting times for neutrino physics