

Mediterranean Neutrino Telescopes

IceCube Invites Astroparticle Physics Madision, 28th April 2011

Paschal Coyle Centre de Physique des Particules de Marseille

Science with Deep Sea Neutrino Telescopes

- High energy neutrino astrophysics: galactic: SN, SNRs, m-quasars, molecular clouds, etc... extra-gal: AGNs, GRBs, dark-GRBs, GZK, etc....
- Search for New Physics: Dark matter (Sun, GC), Monopoles, ??
- Earth-Sea Science:

oceanography, sea biology, seismology, environmental monitoring...

Neutrinos and Multimessenger Astronomy

Photons

- Ubiquitous tool for astronomy up to TeV energies (Hess, Magic, Veritas...)
- Absorbed by EBL at higher energies

Protons/Cosmic Rays

- Detected on Earth up to extreme energies 10⁸ TeV
- Difficult to study sources due to deflection by magnetic fields

Neutrinos

Unambigous probe of hadronic processes

- Not affected by B fields or dust
- Horizon not limited by interaction with CMB/IR
- Time correlated with transient photon signals

Detection Principle

in<u>teraction</u>

The reconstruction is based on local coincidences compatible with the Cherenkov light front

- Main detection channel: 🕱 🔣 interaction giving an ultra-relativistic 😿 (🕼 e and 🕼 tau also)

Energy threshold ~ 10 CeV

24hr operation, more than half sky coverage

High Energy Neutrino Telescopes

North-South common sky : 0.5 p sr instantaneous 1.5 p sr per day

Nothern hemisphere detectors : Uh Pole Galactic center seen 75% of the time Cover Hess and Auger skys 100 %

0%

Three Neutrino Telescope Sites

Efforts in the Mediterranean

ΝΕΣΤΩ

-3500m

Since 1996 Data taking for science 150 members

NESTOR R&D

Single floor deployed in 2003 Downward cosmic ray muons reconstructed

ANTARES Site

ANTARES Detector

ANTARES Infrastructure

	2002
.ine 1, 2	2006
-ine 3, 4, 5:	01 / 2007
	10: 12 / 2007
ine 11, 12	05 / 2008

Deployment of Lines

Ready for deployment

Installed within a few meters of the desired position

Line Connections

IFREMER 'VICTOR6000': Remotely Operated Vehicle (ROV)

Secondary Junction Box

Detector Status

- Completion May 2008
- 885 PMTs
- 88% giving data
- Regular yearly maintenance

Run 53144 Mon Nov 15 18:58:53 2010 Line 1-12 Physics Trigger 3N+2T3+GC+TQ+T2+K40+TS0 Nov2010 25 . 4 ۰. 4 . <u>.</u> . . 4 . 4 4 4 . . 4 4 . . 4 * 4 4 * . ••• • 4 4 . * 4 4 • 4 4 4 . 4 4 4 8 • 4 ••• 20 **.** А e. . 4 ۰. . 4 • **.** • 4 * . s 4 s., . . A 4 ••• . 4 4 . 4 4 4 4 ٠. . . 4 4 4 * -15 . . . • ٠. . 4 • 4 . 4 4 4 4 ••• • . . . 4 4 4 4 * 4 * * * 4 4 . 4 10 • 4 4 . * ••• . •• 4 . 4 . . 4 . . * 4 . * . . s 4 . . 4 4 s. ••• л A e. * * 4 . . 4 ٠. ••• ▲ 5 4 4 4 . 4 4 <u>.</u> • 4 4 * 4 * . * 4 ••• * 4 . . 4 4 4 . 4 4 ••• •• 0 2 3 4 5 7 6 8 9 12 10 11 missing 3 102 0 7 4 high 1 2 755 11 0 empty low ok

Acoustic Positioning

In-situ Calibration with Potassium-40

WATER Vs ICE: Uniformity/Resolution

WATER: Antares (~0.2°) KM3NeT (~0.05°)

ICE: Amanda (~2°) IceCube (~0.7°)

Optical Beacons: time calibration, absorption length

Signal Charge (in selected time window) / # Flashes

Example Data Events

reconstructed up-going neutrino detected in 6/12 detector lines:

reconstructed down-going muon bundle detected in all 12 detector lines:

Time [ns]: -140.40

Track Reconstruction

- Maximum likelihood track fit to muon hypothesis (beta=1)
 - Pdfs for Cherenkov & ⁴⁰K bkgds
 - mulitple starting directions
 - Estimation of uncertainty on track direction

 $\Lambda > -5$ (2007-2008 data)

Depth Intensity Relation from Zenith Distribution

Astroparticle Physics 34 (2010) 179

Zenith angle distribution of muon flux at 2000 m

Surface Array Project

* atmospheric

Liquid scintillator/PMT modules on boat: Independent and rapid verification of the absolute pointing

-16 units, 10 days: 🕱 🛣 ~0.25°, 🕱 🕱 ~0.7°

- 4 prototype modules tested at sea
- Performance as expected
- -16 modules to be deployed this year

Angular Resolution for Upgoing Neutrinos

Full 12 line detector

2007+2008 analyses: Angular resolution $\sim 0.5^{\circ}$ ($\Delta \Theta < 1^{\circ}$, in 75% of cases)

Integrated over all energies (E⁻² flux)
Half of data only 5 lines

Candidate List Search

List of 24 candidate sources

Source	ra,decl	fit Nsig	Q	Limit Nsig	$\operatorname{Limit} \phi$	p-value
GX 339	-104.3, -48.79	2.24	3.41	6.590	2.13e-07	0.068
RX J0852.0-4622	133.0, -46.37	1.24	1.81	5.510	1.78e-07	0.397
RX J1713.7-3946	-101.75, -39.75	1.07	1.80	5.540	2.25e-07	0.399
1ES 0347-121	57.35, -11.99	1.49	1.43	4.840	2.57e-07	0.574
HESS J1837-069	-80.59, -6.95	1.04	1.11	4.620	2.45e-07	0.705
3C 279	-165.95, -5.79	1.01	1.00	4.600	2.44e-07	0.743
PSR B1259-63	-164.3, -63.83	1.03	0.56	4.520	1.45e-07	0.879
HESS J1023-575	155.83, -57.76	1.05	0.24	4.220	1.36e-07	0.952
PKS 2005-489	-57.63, -48.82	0.00	0.00	3.530	1.14e-07	~ 1
RGB J0152 $+017$	28.17, 1.79	0.00	0.00	3.110	1.87e-07	~ 1
Galactic Center	-93.58, -29.01	0.00	0.00	2.790	1.3e-07	~ 1
LS 5039	-83.44, -14.83	0.00	0.00	2.520	1.34e-07	~ 1
H 2356-309	-0.22, -30.63	0.00	0.00	2.430	1.13e-07	~ 1
PKS 0548-322	87.67, -32.27	0.00	0.00	2.160	1.01e-07	~ 1
W28	-89.57, -23.34	0.00	0.00	1.940	9.71e-08	~ 1
${ m HESS}$ J1614-518	-116.42, -51.82	0.00	0.00	1.690	5.46e-08	~ 1
$1 ES \ 1101-232$	165.91, -23.49	0.00	0.00	1.400	7e-08	~ 1
Cir X-1	-129.83, -57.17	0.00	0.00	1.280	4.12e-08	~ 1
RCW 86	-139.32, -62.48	0.00	0.00	1.270	4.09e-08	~ 1
ESO 139-G12	-95.59, -59.94	0.00	0.00	1.270	4.09e-08	~ 1
PKS 2155-304	-30.28, -30.22	0.00	0.00	1.240	5.78e-08	~ 1
${ m HESS}$ J0632+057	98.24, 5.81	0.00	0.00	1.220	8.2e-08	~ 1
Centaurus A	-158.64, -43.02	0.00	0.00	0.860	3.5e-08	~ 1
SS 433	-72.04, 4.98	0.00	0.00	1.390	8.34e-08	~ 1

Most significant candidate GX 339-galactic micro-quasar

Point Source Limits

Quoted for E⁻² flux

ANTARES- some of best limits in the Southern sky

much more data (2009-2011) on tape

Expect further improvement once energy estimator included

Improved sensitivity, especially in overlap region

GRB Triggered Searches

- > 1300 alerts from GCN have been recorded (Jan 2011)
- Lines 1-5 data unblinded: 37 GRB alerts
- The total prompt emission duration of the 37 GRBs is 1882 s

Search for neutrino emission from gamma-ray flaring blazars

1st year Fermi LBAS catalogue (LAT Bright AGN Sample): 10 sources with flares in 2008

Search for neutrino emission from gamma-ray flaring blazars

9 sources: 0 events 🕅 upper-limit on the neutrino fluence

3C279: 1 event compatible with the source direction ($\Delta \alpha$ =0.56°) and time distribution

Þ pre trial p-value = 1.1% post trial p-value ~10%

Not significant

Telescopes and ANTARES Target of Opportunity

TATOO: optical follow-up of neutrino alerts in order to search for transient sources (GRB, choked GRB, AGN flare...)

1.9° x 1.9°

Large sky coverage (> 2π sr) + high duty cycle Improved sensitivity (1 neutrino 3 sigma discovery) No hypothesis on the nature of the source Independent of availability of external triggers

Optical Follow-Up

27 alerts sent in 2010: all followed by optical telescopes

TAROT: two 25 cm telescopes

- fov 1.86° x 1.86°
- Magnitude V<17 (10s), V<19 (100s)
- slewing time ~ 10s

AND THE REAL PARTY OF THE REAL

<u>ROTSE</u>: four 45 cm telescopes

- fov 1.85° x 1.85°
- Magnitude V~19 (60s)
- slewing time < 6-8s

Analyses ongoing....

Diffuse n_mflux analysis

Data: 2008-2009

First level: good quality upgoing tracks Cuts on zenith angle, Λ , n_{lines} in prefit, N_{hit} Second level: Λ vs N_{hit}

Energy estimator:

Repetition (R) of hits on the same optical module

Distribution of the *R* parameter for the 134 neutrino candidates

Diffuse n_mflux

"Search for a diffuse flux of high-energy v_{μ} with the ANTARES neutrino telescope" Physics Letters **B696** (2011) 16-22.

Magnetic Monopoles

 Required in many models of spontaneous symmetry breaking ('t Hooft, Polyakov)

upgoing 🕅 masses less than ~10¹⁴ GeV

• High photon yield $(8.5 \times 10^3 \text{ times } \mu)$ Cherenkov threshold $\beta > 0.74$ secondary δ -rays $\beta \ge 0.5$

Modified track reconstruction with bfree

Magnetic Monopoles (cont)

 Selection criteria based on: upward going direction reconstructed beta λ = log(chi2 b=1/chi2 b=free) number of hits

 Optimised for model discovery potential

> Best limits currently available

eta	Number of	90% C.L. upper flux limit
	observed events	$(cm^{-2}s^{-1}sr^{-1})$
0.55	12	3.97×10^{-15}
0.60	3	4.29×10^{-16}
0.65	0	6.45×10^{-17}
0.70	1	8.20×10^{-17}
0.75	0	3.79×10^{-17}
0.80	0	2.33×10^{-17}
0.85	0	1.70×10^{-17}
0.90	0	1.68×10^{-17}
0.95	0	1.54×10^{-17}
0.99	0	1.24×10^{-17}

Real Time BioCameras

bioluminescence from Macroscopic organisms

AMADEUS: Acoustic Detection of Neutrinos neutrino Hydrophone **Array** Cascade Acoustic Storey (Pointing Down) Buoy Acoustic Storey L12 (Standard) IL07

Very good news from OvDE:

Almost daily detection of sperm-whales The major environmental agencies declared that sperm-whales disappered in the area

Seismograph: Japan Earthquake

In laboratory

Deployment

Buried at site

Japan earthquake 2011 March 11 at Antares site

Seismic/Tsunami network to be extended towards Nice

KM3NeT

Design study FP6 last 4 years --- TDR published Preparatory Phase FP7 ongoing On ESFRI Roadmap

Multi-PMT Optical Module

Self-contained "plug-and-play" module (17")

- Photo-sensors 31 (19+12) 3" PMTs
 - Equivalent of 4 x 8" PMTs
- Includes:

KM3NeT

- All read-out/control electronics
- Calibration devices
- Single penetrator for connection
 - to an e/o backbone cable

Distinguish single from multiple photon hits:

- Photon counting = PMT counting
- Background rejection ⁴⁰K

Looking upward:

- Background rejection atmospheric muons
- More uniform angular acceptance

Directionality:

- Signal photons from one side Ageing:
- lower gain ~10⁶
- charge spread over multiple dynode chains

Large PMT -Afterpulses

In multi-PMT DOM we see real large photon fluxes with more than one tube. ≻Less sensitive to single tube noise

Point Source Sensitivity

TDR layout: 2 building blocks (160 DUs each), 180m spacing

KM3NeT

Further improvement expected from use of energy estimators and unbinned approach

Congratuations IceCube!

