Peering into deep blue ice: achievements and challenges

Kenny Matsuoka Norwegian Polar Institute

Acknowledgements

- Japanese Antarctic Research Expedition (1998-)
- US Antarctic Programs (2002-)
- Belgian Antarctic Research Expedition (2008-)
- Norwegian Antarctic Research Expedition (2011-)
- Charlie Raymond, University of Washington
- Shuji Fujita, National Institute of Polar Research
- Frank Pattyn, Univ. Libre de Bruxelles
- Joe MacGregor, Univ. Texas

Contents

- Introduction
- Effects of ice properties on radio-wave propagation
 - Alighments of ice crystals (crystal-orientation fabrics)
 - Ice temperature and chemistry
- Deep ice
- Ourlook

Radar data

Matsuoka, Morse and Raymond (2010) JGR Earth Surface

Radar reflectors ~= isochrones

Histries of surface accumulation, subglacial melting and ice flow

Pattyn, Matsuoka et al. (in review)

Wave propagation within ice

Illustration: Beth Tully (UW Edit-design Center)

Radar returned power (theory)

$$\left[P\right]_{\mathrm{dB}} = \left[S\right]_{\mathrm{dB}} - \left[G\right]_{\mathrm{dB}} + \left[I\right]_{\mathrm{dB}}$$

When S is stable, geometrically corrected returned power P^c is

$$\begin{bmatrix} P^{c} \end{bmatrix}_{dB} \approx \begin{bmatrix} P \end{bmatrix}_{dB} + \begin{bmatrix} G \end{bmatrix}_{dB} \approx \begin{bmatrix} I \end{bmatrix}_{dB}$$
$$\begin{bmatrix} I \end{bmatrix}_{dB} = \begin{bmatrix} B \end{bmatrix}_{dB} + \begin{bmatrix} R \end{bmatrix}_{dB} - \begin{bmatrix} L \end{bmatrix}_{dB}$$

S: Instrumental factors

- G: Geometric factor
- *I*: lce properties
- *B*: Signal reduction due to ice-fabric-induced birefringence
- R: Reflectivity
- L: Attenuation

B and *R*: frequency/polarization dependent *L*: frequency/polarization independent

e.g. Matsuoka (2011) GRL

Dielectric anisotropy of single crystal

• Permittivity ε

- 1.07% anisotropy $\varepsilon_{\parallel c} = 1.0107 \varepsilon_{\perp c}$
- Anisotropy is uniform over radio/microwave frequencies and terrestrial temperature range
- Conductivity σ
 - Insignificant anisotropy

Fujita et al. (2000) in Physics of Ice Core Records

Alignments of ice crystals

Schmidt-net projection of ice fabric patterns

Vertical single-pole fabric

Vertical girdle fabric

Ice core vs. ice sheet

- Optical research of thin sections $(z = 10^{-3} \text{ m}) / (\lambda = 10^{-7} \text{ m})$
- Radar research of the ice sheet $(z = 10^3 \text{ m}) / (\lambda = 10^0 \text{ m})$

Signal drops due to birefringence

Phase difference
$$\phi = 2\pi z \sqrt{\Delta \varepsilon} / \lambda$$

Anisotropy $\sqrt{\Delta \varepsilon} = (\varepsilon_{\parallel c} - \varepsilon_{\perp c}) \Delta C$

 ΔC : fabric anisotropy in the plane right to the propagation axis

e.g. Hargreaves (1977) J. Phys. D

Signal-drop depths (radar vs. Ice core)

Radar data

Estimates with ice cores

Fujita, Maeno and Matsuoka (2006) J. Glaciol.

Frequency dependence of bed-returned power (Greenland)

Blue curve: CReSIS, Univ. Kansas

Bed returned power measured with a bistatic configuration

Black curves: Estimates using the ice-core data

Matsuoka et al. (2009) IEEE-TGRS

Reflection causes

- Density contrasts
 - Significant only at depths roughly < 500 m
 - No reflections from gas hydrates
- Acidity contrasts
 - Correspond to large volcanic events
- Ice-fabric contrasts
 - Dominant at high frequencies (> 50-100 MHz)

e.g. Fujita et al. (2000) in *Physics of Ice Core Records*

Fabric-origin reflections

Matsuoka et al. (2009) *IEEE-TGRS*

Birefrigence + anisotropic reflection

Matsuoka et al. (in prep)

Polarimetric radar signatures and GPS-measured ice-motion data

Matsuoka et al. (in prep)

Modeling radar attenuation

$$\left[L(z_2)\right]_{dB} - \left[L(z_1)\right]_{dB} = 2\left[\int_{z_1}^{z_2} N(z)dz\right]_{dB}$$

Local attenuation rate *N* = function(ice temperature, chemistry)

MacGregor et al. (2007) JGR; Matsuoka et al. (2010) JGR

Attenuation estimates from ice core

MacGregor, Matsuoka, and Studinger (2009) EPSL

Attenuation estimates using thermo/mechanical model

The bed returned power is more controlled by attenuation rather than bed reflectivity

Matsuoka (2011) GRL

Conventional radar algorithm

Attenuation rate is assumed to be uniform in the study area so that attenuation is proportional to the ice thickness

Jacobel et al. (2009) Ann Glaciol.

False estiamtes of attenuation

Matsuoka (2011) GRL

Attenuation estimates from radar data

Returned power from the bed beneath 3-km-thick ice varies by 27 dB, regardless of the bed conditions.

Matsuoka et al. (2010) JGR Earth Surface

Continental attenuation estimates

Geothermal flux is tuned using ice temperature from deep bore holes and locations of known subglacial lakes [Pattyn, 2010, EPSL].

Matsuoka, Pattyn, MacGregor (in prep)

Attenuation variations between model ensembles

Lower half of the ice sheet

0 2 4 6 Variations of model predictions (dB/km, one way)

Matsuoka. Pattyn, MacGregor (in prep)

What should we do?

- Routinarly use multi-frequency/polarimetry sensors and collect coherent data
- More rigorous data-interpretation models
 - Understand the all properties of the radar data altogether.
 - More tightly couple ice-core and borehole-logging studies with the radar studies.
 - Low depth-resolution data for birefringence and attenuation
 - High depth-resolution data for reflection

40 years in radioglaciology

Oswald and Robin (1973) Nature; Data courtesy: SOAR

Unlock the secrets in the deep ice

Drew et al. (2009) The Cryosphere

Thank you

Kenny Matsuoka matsuoka@npolar.no