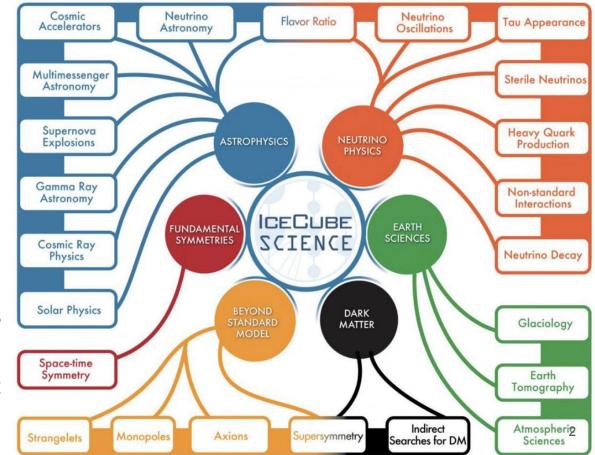
Analyses in IceCube

Emre Yildizci IceCube Summer School 2025



*Content shamelessly "borrowed" from previous year's talks + other talks of collaborators

Science in IceCube

- Organized by Working Groups (WG)
- Each WG group covers one large physics goal
 - Usually with some overlap
- You will interact with your WG the most (in weekly or biweekly calls)
 - Expert feedback
 - Interaction with similar analyses

Details are discussed with subgroup of experts until it is ready for the next step

Working groups

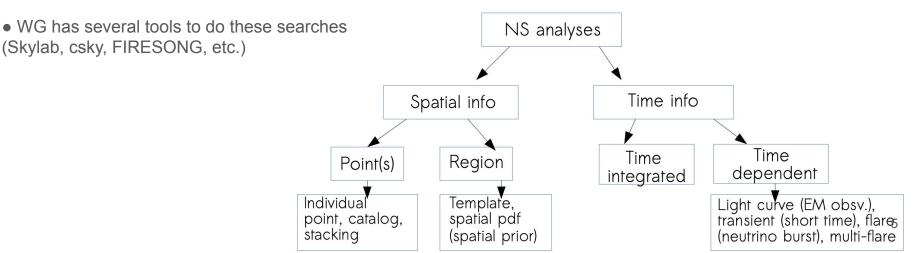
Ana	Analysis		
Oscillations	(calls)	(mail) 岱	
Cosmic rays	(calls)	(mail) 岱	
Diffuse/Atmospheric ν	(calls)	(mail) 岱	
Low Energy Astrophysics	(calls)	(mail) 🗗	
Beyond the Standard Model	(calls)	(mail) 岱	
Neutrino Sources	(calls)	(mail) 岱	

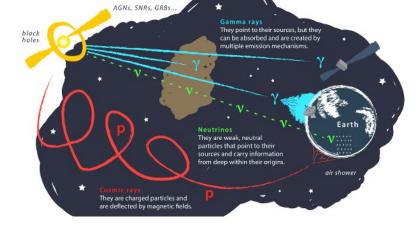
Technical Working Groups				
Reconstruction	(calls)	(mail) 岱		
Realtime	(calls)	(mail) 岱		
Calibration	(calls) 岱	(mail) 岱		
Software	(calls) 岱	(mail) 岱		
Detector &	Simulation	i,		
Simulation		(mail) 岱		
Simulation Production				

R&D projects				
IceCube-Gen2				
Acoustic	(calls)	(mail) 岱		
AURA				
RASTA	(calls)	(mail) 岱		
PINGU				
Proton Decay				
Simulation				
IceCube Extensions		(mail) 🗗		
IceAct	(calls) 岱			

Legacy working groups		
Neutrino Oscillations	(calls)	(mail) 岱
Low-energy ν	(calls)	(mail) 岱
Extreme energies	(calls)	(mail) 岱
Tau & Composites	(calls) 岱	(mail) 岱
Exotic particles	(calls)	(mail) 岱
WIMPs/Dark Matter	(calls)	(mail) 🗗
Transients	(calls)	(mail) 岱
Point sources	(calls)	(mail) 岱
Cascades/Taus	(calls)	(mail) 🗗
Muons	(calls)	(mail) 岱
Verification		(mail) 🗗
Supernova	(calls)	(mail) 岱

• A wiki page


Each WG has


- Summaries of current & past analyses
- Dedicated calls page where regular calls are coordinated
- Usually 2 WG leads and a technical lead

WG summaries and some existing analyses in each WG

Neutrino Sources WG

- Main goal: to pinpoint the sources of astrophysical neutrinos
- Check for "hot spot" (clusters of neutrinos)
- Can have clusters in both time and space
- Analyses are testing new hypotheses for correlating IceCube's neutrino data with possible sources

Neutrino Sources Analyses

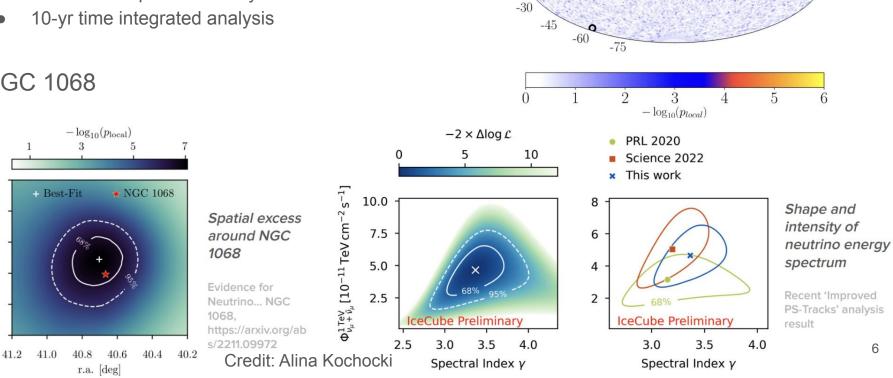
All-sky scan

- Look for hotspots in the sky

NGC 1068

0.6

0.4


0.0

-0.2

-0.4

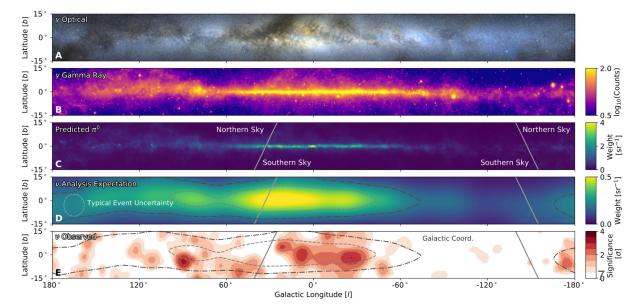
[deg] 0.2

lec.

75

60

45

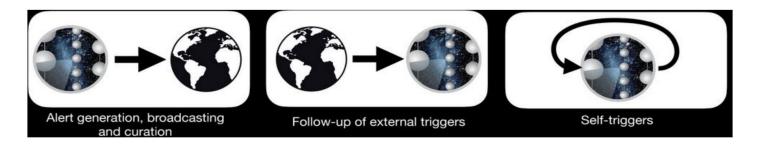

30 15

0 -15

Neutrino Sources Analyses

Observation of high-energy neutrinos from the Galactic plane

- A diffuse galactic neutrino emission is expected from cosmic-ray interactions on gas within the galaxy
- Galactic point sources may also contribute to this excess:
 - X-ray binaries
 - Supernova remnants
 - Pulsar wind nebulae
 - Dense, gaseous regions
 - Magnetars...

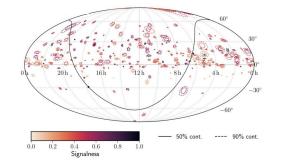

Credit: Alina Kochocki

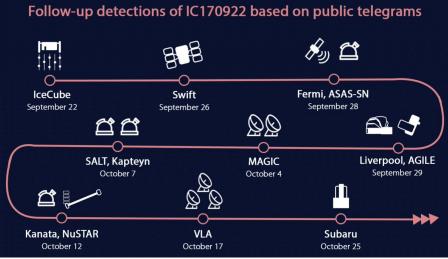
https://arxiv.org/pdf/2307.04427

Realtime WG

- Technical WG, works closely with nu-sources WG
- Builds tools for rapid identification of neutrino sources
- Sends alerts to the astro community
- Also receives alerts from the astro community and quickly searches for neutrinos in coincidence
- Analyses are presented in the nu-sources WG

Three main strategies:

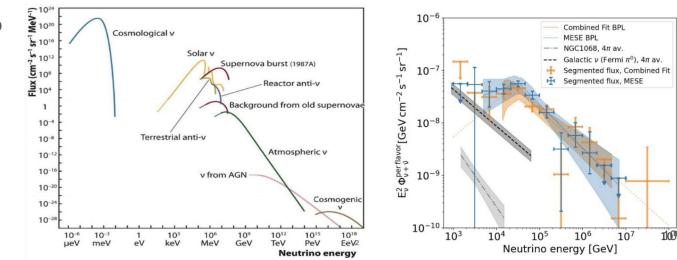

Realtime Analyses


TXS Follow-up

- Alert from IceCube followed up by several observatories
- Magic found a correlated flare of gamma rays, Fermi detects a flaring blazar: TXS 0506+056
 Follow-up detections of IC170922 based on public telegrams

IceCube Alerts 2011 - 2020

Skymap of all neutrino alerts



Q

Diffuse WG

- Works on the diffuse (from all directions) flux of neutrinos observed on Earth
- Tries to measure the atmospheric and astrophysical spectrum of neutrinos in the energy range of TeV to EeV
- Also several particle-physics measurements such as
 - Cross-sections
 - nu/nu_bar ratio
 - Inelasticity

Diffuse Analyses

Diffuse Astrophysical Neutrino Flux

- Flux measurement (<u>9.5 Year Northern Track</u>)
- Astrophysical Neutrino Flavor Ratio (Above 35 TeV in IceCube)

Atmospheric Neutrinos

- Measurement of atmospheric neutrino flux
- Seasonal Variations (Also Cosmic Ray WG)

Cosmogenic Neutrino Flux

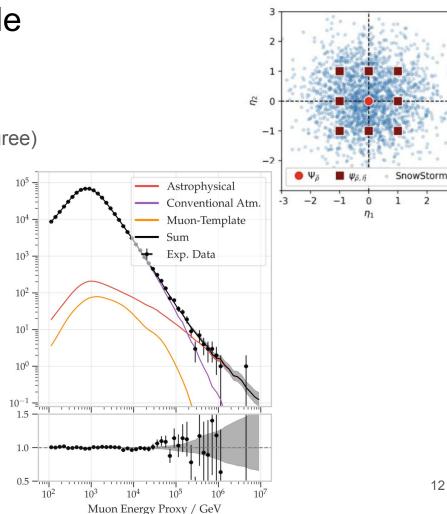
Limit on Extremely-High-Energy Neutrino Flux

Particle Physics

- <u>Glashow Resonance</u> $\bar{\nu}_e + e^- \to W^- \to X$
- Inelasticity: Ratio of hadronic cascade to total neutrino energy
- <u>Cross-Section</u>: Neutrino-nucleon interaction cross-section measurement

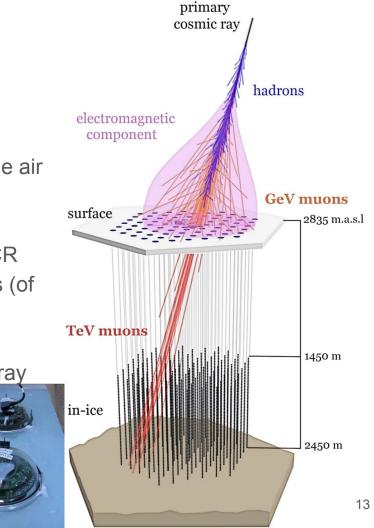
Diffuse Analyses Technical Side

Heavily relies on simulation

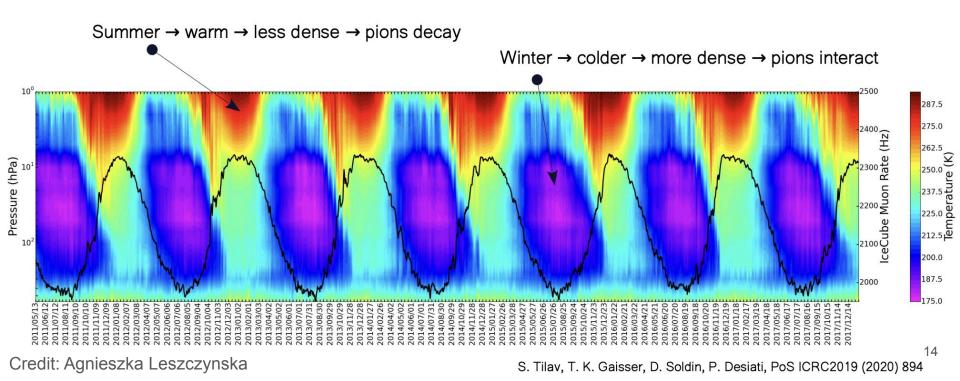

Your observed data needs to (to a certain degree) match your expectation from simulation

More rigorous treatment of systematics

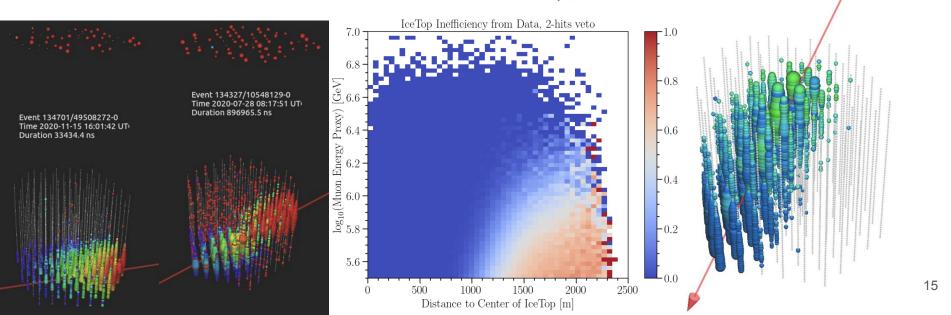
Snowstorm MC: Continuously varied detector systematics rather than discrete


Solid understanding of backgrounds

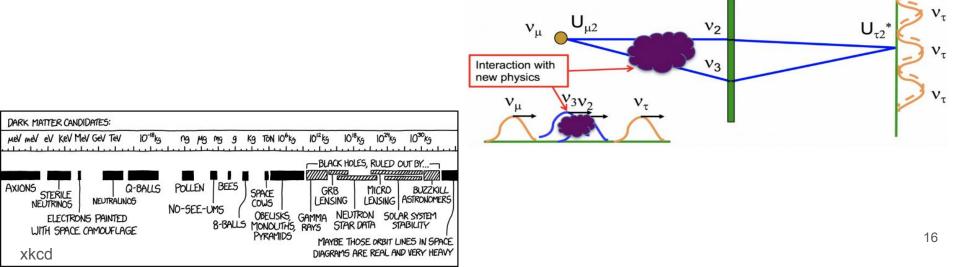
Atmospheric neutrinos/muons


Cosmic Ray WG

- Focuses on analyses with cosmic-ray air showers
- When cosmic rays hit Earth's atmosphere, a particle air shower is created
- Uses IceTop (cherenkov tanks) + in-ice detectors
- Works on CR energy spectrum, CR composition, CR anisotropy, sun+moon shadow, seasonal variations (of atmospheric neutrinos)
- Uses MCEq, CORSIKA, FLUKA and GEANT4
- Also deals with surface enhancements (Surface array WG) with scintillators, radio, and IceACT


Cosmic Ray Analyses

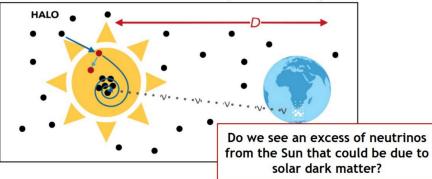
Seasonal variations


Cosmic Ray + Diffuse Analysis (IceTop as veto)

IceTop activity used to differentiate downgoing Atmospheric events (w/ IceTop hits) Astrophysical events (w/o IceTop hits)

BSM WG

- Focuses on new physics that could be out there (The 3-flavor model of neutrino oscillations is widely accepted, but what if that is not the whole story?)
- Interactions with new physics can cause distortions in the spectrum and flavor of both astrophysical and atmospheric neutrinos

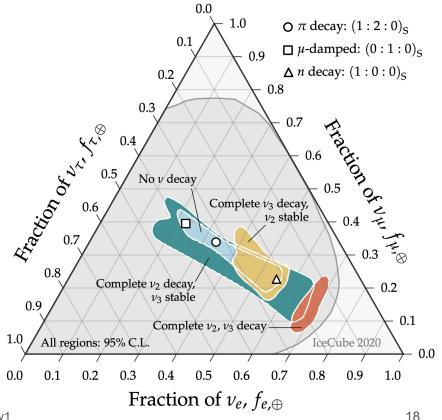

BSM Analyses

Sterile-neutrinos (w/ decay): Do we see a signal consistent with that from a 4th neutrino flavor? Using MEOWS

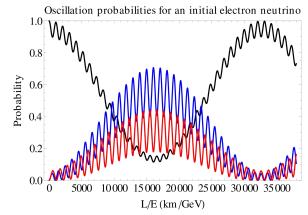
Magnetic monopoles: Is there evidence for slow non-relativistic monopoles?

Diffuse DM: could part of the diffuse spectrum be due to DM?

Solar/Earth DM: Do we see an excess of neutrinos from the Sun/center of the Earth that could be from DM?



BSM Analyses


Flavor composition of high-energy astrophys effects of neutrino decay

Source flavor compositions

Various decay scenarios

Oscillations WG

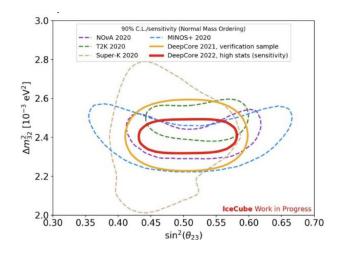
- Focus on neutrinos changing flavor as they Cross the Earth
- Oscillation probability

$$P_{lpha
ightarroweta,lpha
eqeta}=\sin^2(2 heta)\sin^2\left(rac{\Delta m^2L}{4E}
ight)$$

• Oscillation parameters, tau neutrino appearance, neutrino mass ordering, non-standard interactions, sterile neutrinos

Oscillation Analyses

OscNext: Data selection using DeepCore


- Two samples: "high-stats" sample and "verification" sample (subset of golden events)
- Analysis using OscNext:
 - NuMu disappearance, NuTau appearance
 - Non standard neutrino interactions (NSI)
 - Neutrino mass ordering

MEOWS

- Sterile neutrino search
- NSI analysis
- Earth density profile
- Galactic Plane flavor ratio

FLERCNN

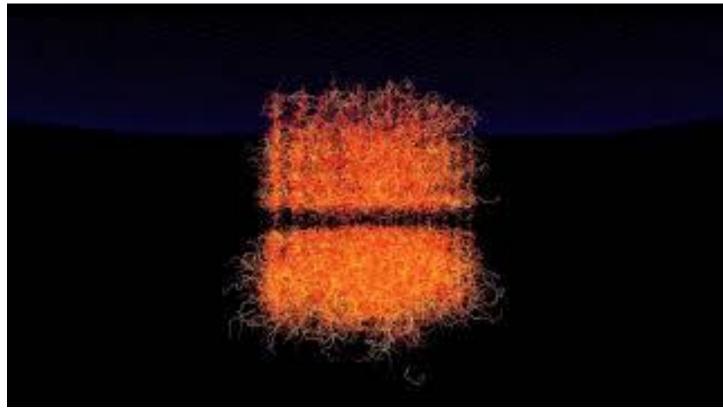
• New reconstruction tool (fast) for low energies

Low Energy WG

Searches for **MeV neutrinos** from supernovae & other transients:

- Sensitivity to astrophysics and fundamental neutrino physics.
- Multi-messenger warnings as part of the SNEWS network.
- Lots of modeling tools (<u>SNEWPY</u>, <u>ASTERIA</u>, <u>SNOwGLoBES</u>, <u>sntools</u>, …)

Constraining **GeV neutrino emission** from energetic transients:


- Sensitivity to a huge range of astrophysical neutrino production mechanisms.
- Background reduction challenge: interesting task in computer vision!

Significant overlap with Neutrino Sources & BSM Working Groups.

Low energy events

https://www.youtube.com/watch?v=TaaFsqaH b3l

Not your typical neutrino event

Technical WGs

Calibration WG

- Deals with calibration of the detector
- Ice properties with LED flashers, using muon tracks, Sweden camera studies
- DOM efficiency, IceTop calibration

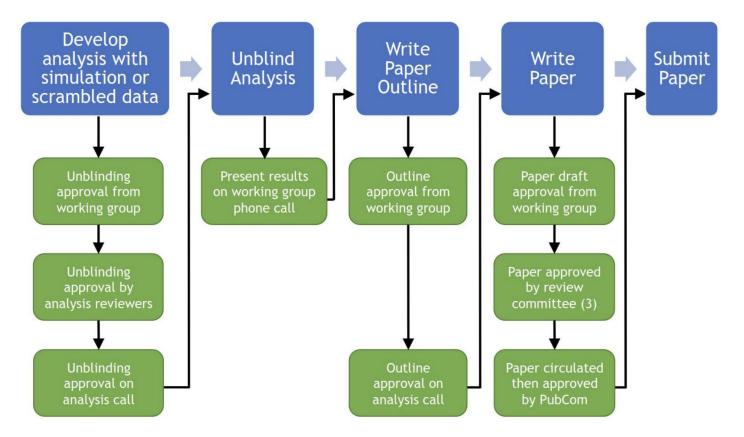
Reconstruction WG

• Many of the recos are machine learning/deep learning based

Software WG

• IceTray, detector response, other simulation tools

Physics analyses depend heavily on these technical WGs


Where everything comes together

- Analysis Call on Thursdays at 9:00 am CST (~1 hour)
 - Most nearly-finished analyses are presented to the whole collaboration here
- High-level description of the analyses
- Good for learning about other analyses in IceCube
- Also sometimes have WG summaries
- Collaboration-wide announcements, discussions and decisions happen here

https://wiki.icecube.wisc.edu/index.php/Analysis_calls_2025

How to Do Your Own Analysis in IceCube

How to publish an IceCube paper

How to present at an international conference

- Presentations (talks/posters) are given on behalf of the IceCube collaboration.
- You MUST obtain permission from the speakers committee to make an IceCube presentation at an international conference.
- You do not need speakers committee approval to give:
 - a presentation at a national physics/astronomy/similar meeting (e.g. APS, Deutsche Physikalische Gesellschaft), a school, a colloquium or a seminar
 - an overview presentation that discuss more than one experiment and uses only published IceCube results

After the permission

- An abstract must be circulated
- The presentation must be available for review
 - If your presentation includes new material, follow the procedures for <u>obtaining permission</u>

More details: <u>https://wiki.icecube.wisc.edu/index.php/Speakers_Committee</u>

Thank you for your attention Questions?