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At optical & infrared wavelengths, 3 basic
measurements

Photometry: Integrated detected flux collected by an
Imager, through a passband (filter).

Spectroscopy. Disperse light from a slit in the focal

plane, measure F(A) with good local precision.

Spectro-photometry: Spectroscopy, but with good
global flux precision and accuracy.
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The Original Evidence for Accelerating Expansion, 1998
Schmidt et al, High-z SN Team
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Big surveys are coming!
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P The PanSTARRS Survey

Pan-STARRS

1.4 Gpix camera 1.8 meter telescope
3.3 degree FOV

8
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The Dark Energy Survey

New wide field (2.2 deg
dia) instrument on the
CTIO 4 meter telescope

570 Mpixel _—
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Large Synoptic Survey Telescope
Top ranked ground-based project in 2010 Decadal Survey

Optimized for time domain
scan mode
deep mode
10 square degree field
6.5m effective aperture
24th mag in 20 sec
>20 Tbyte/night
Real-time analysis

Simultaneous multiple science goals
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More Supernovae, Better Precision

Discovery data |20 distant SNe 10% precision
1998

ESSENCE, |200 distant SNe 3 % precision
SNLS

2009
PanStarrs 2000 SNe 1% precision
2011

LSST 20,000 SNe <1%
ZAONES
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Pushing to Better Precision

Next-generation surveys promise considerable advances
over current capabilities: 3 pi time domain, deep imaging...

The requisite precision for pushing to the next level of
characterization of the Dark Energy is < 1%. Inadequate
corrections for variable atmospheric transmission will be a
leading source of systematic error in next-gen efforts.

SDSS achieved few-percent precision all-sky, while

differential measurements in single frames reach
millimagnitude (part per thousand) levels

We are nowhere close to the Poisson limits for objects with
SNR > 100.

Why?
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Broadband photometry

Galactic scattering

0G.j) = Y, [SWARQGATA) dA

sources

Source Atmosphere Instrumental transmission

Four aspects to the photometry calibration challenge:

Relative instrumental throughput calibration (i.e. get the colors right)

Absolute instrumental calibration (I claim this this is far less important)
Determination of atmospheric transmission

Determination of Galactic extinction (most stars lie behind the extinction layers).

Historical approach has been to use spectrophotometric sources (known S( )) to deduce the
instrumental and atmospheric transmission, but this (on its own) is problematic: integral
constraints are inadequate, plus we don’t know the sources well enough.
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The Challenges

The atmosphere is complicated.... The assumption of
axisymmetric stable conditions fails, at some level.

There aren’t any sources on the sky whose photon
spectrum is currently known at or below the 1% level.

Current metrology (and meterology!) measurement chain
s ill-defined.

Must know precise instrumental sensitivity function.
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Basic Philosophy

Use precisely calibrated photodiode as fundamental basis for flux
UEENVEIUERIS

Measure instrumental throughput relative to known photodiode.
Measure atmospheric transmission function directly

Determine Galactic extinction with optical/NIR data, supplemented
by thermal IR emission data.

Report photometry in “natural” system of counted photoelectrons,
not AB magnitudes. We don’t measure energy! (thisis a
contentious and perhaps overly pedantic point....)

Deliver, for each photometric measurement, the effective passband
through which it was obtained.
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Detectors are better characterized
than any celestial
spectrophotmetric source

Spectrum of Vega NIST photodiode QE

Measuring instrumental throughput relative to photodiode
establishes zeropoints across filters. Leaves a single overall
unknown (~ effective aperture), which is of less interest.




Proof of concepit:
2007 CTIO test

CTIO Blanco 4m
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Atmospheric Transmission
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The Traditional Approach

Measure “extinction coefficients” for each passband, using some combination of
known stars and zenith angle variation. Regress flux data to zero
atmosphere.

Use “standard stars” to determine relationship to established photometric
systems.

Use thermal dust emission for Galactic extinction

Calibration observations compete
with science.
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S0 we need to measure (or determine)

Extinction due to clouds, and transparency
variations: This can be bootstrapped if a given field
IS observed many times, some in cloud-free
conditions. Tougher if only a few visits per band.

Aerosols: LIDAR is probably best?

Water vapor: differential photometry or
spectroscopy, or precise dual-band GPS?

Barometric pressure, for MODTRAN input.
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Direct Measurements

Differential flux measurements, on and off water absorption
features

Differential retardance of dual band GPS signals.
Infrared emission from clouds

LIDAR (Rayleigh, Na, Raman...?)

Differential extinction vs. wavelength

Zenith dependence of extinction.
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But we're learning how to do this...

xle-13 Fitted Spectrum for Observation cdnov3065.tab

Joint fits to
instrumental
response,
atmospheric
attenuation, and
source spectrum.

(D. Burke,
LSST/SLAC.)




Differential Narrowband Water Monitor

Simultaneous measurements on-band (940 nm) and
off-band (880 nm) using stars to back-light
atmosphere.

Proof-of-principle data shows promising results

~ 300 mm 1/2.8 1K x 1K deep
- depletion CCD

— 940 nm

— 3880 Nnm
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Dual-band Geodetic-Quality GPS
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Can we use the statistical properties
of stars as a calibration tool?
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A universal observed stellar locus

Disk M dwarfs with metallicity [Fe/H] > 0.7
all from closer than ~1 kpc ‘

SO minimal sensitivity to

MW metallicity gradients

Main sequence disk stars
and evolved halo stars
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SLR-
The Basic Idea

Take flatfielded but otherwise
uncalibrated images

Extract a catalog of sources

Identify the stellar locus in color-
color space

‘Snap” the observed locus into
agreement with a fiducial locus

Apply this color correction to all
objects in the catalog

calibrated

instrumenal
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A New Network of Precise NIST-based
Spectrophotometric standards?

Current spectrophotometric standards fall short in 3 ways:

1. Too bright

2. Not tied to current metrology standards, they
are Vega-based, or rely on white dwarf atmospheric models.

3. Inadequate attention paid to atmospheric attenuation.
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Magnitude Range per exposure

Hyperbolae are lines
of constant integrated
photons, separated
by 1 magnitude.

Four major imaging
surveys (LSST, DES,
PS-1 deep fields,
SNAP) all have a
common desired

photometric calibrator
magnitude.

PS-1 all-sky survey is
3 magnitudes brighter

Saturation is the
issue. LSST

saturates at around
18th, but depends on
sky brightness and
clouds.
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Is LIDAR the right tool for aerosols, and if so
WhICh k|nd of LIDAR?

Rayleigh?
Na?
RAMAN?

Astronomical observations only care
about integrated line of sight
attenuation.

2010 Madison Workshop on Atmospheric Monitoring




Clouds and Grey transparency
PanSTARRS takes 30 sec images

LSST will take 15 second images.

Can do local re-normalization, over some
region... ubercal”.

Over what angular scale can grey attenuation be
assumed constant?

— Fast-framing imager, co-boresighted?
— Use variability of sources to deduce power spectrum of
attenuation?

— Thermal imager?
— Data from geo-synch satellites?
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Open Questions: Detailed

What is the most effective way to determine water vapor, and what
IS its structure function? Is GPS good enough?

What is the role of artificial sources, on aircraft/balloons/satellites?

What instrumentation would be optimal for establishing a new set of
all-sky spectrophotometric standard stars?

Can we exploit the uniformity of the stellar locus?

How can we best field instruments at 3 sites of prime interest:
« Mt. Hopkins, AZ
 Haleakala, HI

« Cerro Tololo and Cerro Pachon, Chile.
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Open Questions: High-level

What distribution in time and pointing, will suffice to meet our

goals? What are the spatio-temporal structure functions?
How far from primary boresight can we go?
What is the most precise atmos. transmission model available?

What is the minimal set of observed parameters needed to

adequately characterize atmospheric transmission?

, I
How can we blend the experiences, meet common needs, and

exploit the respective strengths of diverse scientific

communities? )
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Galactic Extinction

The plane of the Milky Way is laced with dust
lanes. Other patches of dust may also be out
there.

We currently use the thermal IR emission of
dust, in conjunction with assumptions about
how that relates to optical properties, to infer
line of sight extinction. This is the “SFD” map.
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