Towards Poisson-limited photometry from ground-based telescopes

Peter C. Zimmer^a, John T. McGraw^a, Steven W. Brown^b, Claire Cramer^b, Gerald T. Fraser^b, Keith R. Lykke^b, Allan W. Smith^b, John T. Woodward^b, Emilio Falco^c, Christopher W. Stubbs^d

^aUniversity of New Mexico ^bNIST ^cHarvard-Smithsonian Center for Astrophysics ^dHarvard University

Astronomical Photometry: Extinction Record

"It is impractical to determine the extinction thoroughly and accomplish anything else."

- Stebbins and Whitford (1945)

Astronomical Photometry: Stars as Standards

Stars: Pros

- shine for billions of years.
- are well known thermal sources.
- radiate from the UV to the IR.
- have understandable spectra.
- appear radiometrically stable over long time scales.
- are reasonably well distributed over the entire dome of the sky.
- are bright enough to be measured with small telescopes.
- are representative of the energy source of the Earth.

Stars: Cons

- can form as binary or multiple systems.
- can be luminosity variable.
- have apparent brightness
 dependent upon distance in a
 dusty, gas-filled spiral galaxy.
- have temperatures ranging from about 100,000 K to 2,500 K.
- have other stars nearby that limit photometric measurement.

Astronomical Photometry: Standard Stars

 calibrating ground- and space-based telescopes and optical NIR sensors,

SSA sensor test and calibration,

 radiometric calibration of nextgeneration spectrophotometric detectors.

Instruments that can be calibrated using standard stars:

Upper Left: NOAA GOES-R Satellite
Far Left: SBIRS Ballistic missile launch
detection satellite

Left: Wide Field InfraRed Space Telescope (WFIRST)

Astronomical Photometry: Current State of the Art

Differential Photometry –

- Ratio of intensities of nearby objects in same field of view (FOV)
- Can achieve Poisson noise limit
- Typical precision of ~0.1%, heroic efforts ~0.01%

All-sky Photometry –

- Ratio of intensities of objects separated by many FOV
- Typical precision > 2%, heroic efforts ~1%

Absolute Photometry – 2% (heroic) for one star

Astronomical Photometry: Instrumental Limitations

Telescope Optics

- Field dependent illumination
- Dust accumulation
- Thermal expansion

Filter Bandpass

- Deterioration
- Slight variations from telescope to telescope

Detector

Pixel-to-pixel quantum efficiency variablility

Astronomical Photometry: Earth's Atmosphere

Molecular Scattering and Absorption Aerosol Scattering and Absorption Cloud Scattering

Atmospheric Extinction: Two Categories, Two Instruments

Slowly varying with wavelength

- Clouds rapid temporal and angular variability
- Aerosols confusion with O₃ absorption

Instrumental Solution:

LIDAR

Rapidly varying with wavelength

- H₂O absorption significant temporal variability
- O₂ absorption stable and easily modeled

Instrumental Solution:

Spectrophotometry of Absolute Standard Stars

Atmospheric Extinction: Additional Data

- Combine
 - Surface weather measurement
 - Rayleigh Scattering and O₂ absorption from pressure
 - AERONET aerosol data
 - Direct measurements of observed column
 - Direct Measurement Radiosonde
 - PWV column from GPS
- As Input to Radiative Transfer Models
 - MODTRAN

Measure the Atmosphere: LIDAR

Light Detection and Ranging – laser analog to radar

$$N_{\gamma}(r) = \frac{N_0 \eta A}{2r^2} \left[\frac{3}{8\pi} \beta_M(r) + \frac{P_{\pi}(r)}{4\pi} \beta_P(r) \right] e^{-2 \int_0^r (\beta_M + \beta_P + \alpha_M + \alpha_P) dr'}$$

- Scales with density, h_0 ~8.4km
- Ny $\sim 10^{14}$ per pulse
- Return scales as e^{-h}/R²
 - Dynamic range >10⁹
 (from 100m to 60km)
- Time-gated return yields range

LIDAR: The Astronomical Lidar for Extinction (ALE)

Prototype system for Observatory LIDAR

- Based on existing 0.67m telescope
- Transmitter:
 - 527nm, 70 μJ per pulse at 1500 Hz
 - Beam expanded to 300mm for eye safety
- 100mm short range receiver
- Photomultiplier Tubes
 - Analog voltage measurement below 10 km
 - Photon counting above 10 km

Design Goal – 10⁶ photons per minute from above 20 km ASL at zenith

Photo by Dave Roberts, GTRI

ALE development was funded by NSF Grant 0421087.

LIDAR:

The Astronomical Lidar for Extinction

(ALE)

The Big Idea

- Use the stable stratosphere as a quasi-constant scattering target
- Above 20 km, return is pure Rayleigh scatter *
- Density of scatterers measured by NWS radiosonde twice per day
- Extinction from atmosphere above 30 km is stable and small

Under Construction:

Multi-wavelength LIDAR with depolarization sensitivity
(1064 nm, 532 nm, 355 nm, 266 nm)

Measure the Atmosphere: ALE

Astronomical Extinction Spectrophotometer (AESoP)

- AESoP Key Parameters
 - Free spectral range
 - Shortpass (2nd order): 320 nm– 550nm
 - Longpass: 550nm 1050nm
 - Spectral resolution 0.6 nm,R = 1100 at 650nm
 - Pixel resolution 0.28nm at 650nm

- For bright stars, a large aperture is not required
- AESoP is based on 150 year old design
 - 105mm refractor
 - equatorially mounted
 - 90 lines/mm transmission
 grating mounted at the entrance
 aperture.
- No optical elements (other than an order separating filter) after the telescope objective lenses
- Photometric precision is fundamentally limited by scintillation.

AESoP Calibration

Mobile Calibration Lab

Current Test Configuration

AESoP Design Trade-Off

- Slitless Spectroscopy
 - The Good:
 - Spectrophotometric integrity –
 no light lost on slit edges
 - Sky emission lines not resolved
 - No diffraction from secondary spiders
 - Closed tube, near perfect baffling

- The Bad:

- Wavelength and pointing mixed in dispersion direction
 - Need for stable pointing/guiding, hence big mount
- FOV not limited by slit -- source confusion
- Fundamental resolution determined by image quality
 - But: AESoP designed so that resolution limited by pixel sampling in dispersion direction, not seeing

AESoP Operation

Fundamental technique the same as Hayes, Latham & Hayes (1975)

But:

- Calibrations now detector-based instead of emitter-based
- Modern instrumentation
- Far more sophisticated radiative transfer models

AESoP Proof-of-Concept Data

Making and Maintaining Absolute Standard Stars

Monitoring Transmission for Larger Science Telescope

Toward the Poisson Limit

We are attacking the primary sources of systematic error in ground-based photometry:

- Telescope throughput characterization under development by Harvard, NIST & PanSTARRS (Stubbs et al. 2010 astro-ph/1003.3465)
- Atmospheric transmission determination possible with deployable, affordable, automated systems
 - Dedicated instruments supporting larger telescopes
- Calibration of both to NIST standards