Pierre Auger Observatory

studying the universe's highest energy particles

Extracting the Aerosol Phase Function by the Central Laser Facility @ the Pierre Auger Observatory

Karim Louedec

Laboratoire de l'Accélérateur Linéaire University Paris Sud, CNRS/IN2P3, France

September 2010, 14th

Karim Louedec (Linear Accelerator Lab.)

Light scattering by (spherical) particles

Rayleigh scattering: $R \ll \lambda$

 \Rightarrow Molecular

- total cross section: $\sigma_{\rm tot} \propto \lambda^{-4}$,
- attenuation length Λ_m monitored by weather stations,
- phase function:

 $P_{\text{Ray}}(\theta) \propto 1 + \cos^2 \theta.$

Mie scattering: $R \ge \lambda$

- \Rightarrow Aerosols (for instance, sand during a sandstorm)
 - total cross section: $\sigma_{\rm tot} \propto \lambda^{-\gamma}$, with γ the Angström parameter,
 - $\bullet\,$ attenuation length Λ_a deduced from VAOD measurements,
 - phase function $P_{\rm Mie}(\theta)$ from typical parametrizations or tabulated.

Up to now, the Aerosol Phase Function @ Auger

APF signal in fluorescence detectors

- 2 experimental setups located at Coihueco and Los Morados,
- collected signal as follows: $S = A \times P_{\text{Ray}}(\theta) + B \times P_{\text{Mie}}(\theta)$.

Karim Louedec (Linear Accelerator Lab.)

Motivation

Up to now, the Aerosol Phase Function @ Auger

- measurements doable only between 30° and 150°,
- Rayleight night $\iff B = 0 \iff$ no aerosols.

S BenZvi et al, Astroparticle Physics 28 (2007) 312-320

Karim Louedec (Linear Accelerator Lab.) Extracting the APF from CLF shots ATM

Usual aerosol phase functions Vs APF data

- largest aerosols affect the forward peak... but not known by APF measurements,
- consequences on the Multiple Scaterring (MS) parametrizations.

 \implies uncertainty on the shower energy estimation

Outline

A new way to get the APF

- Azimuthal ranges reached for each FD building
- Extraction procedure of the Aerosol Phase Function (APF)

Validation of the reconstruction procedure

- 1st limit case: a Rayleigh night
- 2nd case: an Aerosol night

Interesting shot sets to draw the APF

- Different shot sets currently fired @ Malargüe
- Next step: new CLF shots to get the lowest scattering angles

Conclusion: aerosol monitoring all along the night

Just to remind you, the Auger array

A new way to get the Aerosol Phase Function

Advantages of this technique

- check the uniformity of the aerosols in the whole observatory,
- the experimental setup is already made,
- monitoring of the APF doable all along the night.

Azimuthal ranges for each FD building

- FD locations affect our possibilities,
- in this talk, only the FD building @ Los Leones is used.

Extracting the Aerosol Phase Function (APF)

$$S_i = I_0 \times T_i \times \left[\frac{1}{\Lambda_{\text{Ray}}} P_{\text{Ray}}(\zeta) + \frac{1}{\Lambda_{\text{Mie}}} P_{\text{Mie}}(\zeta)\right] \times \Delta z_i \times \Delta \Omega_i$$

Reconstruction procedure

- Iight collection in each pixel i triggered in the FD camera,
- 2 construction of the analogy: $(\theta_i, \phi_i) \iff$ scattering angle ζ ,
- 3 application of the corrections: Δz_i , $\Delta \Omega_i$, $T_i = \exp(-d_i/\Lambda_{\text{att}})$, \implies Total Phase Function (TPF)
- Subtraction of the Rayleigh Phase Function (RPF),
 ⇒ Aerosol Phase Function (APF)

We need to understand very precisely the kinematics of the laser to well estimate the geometrical parameters

Outline

A new way to get the APF

- Azimuthal ranges reached for each FD building
- Extraction procedure of the Aerosol Phase Function (APF)

2 Validation of the reconstruction procedure

- 1st limit case: a Rayleigh night
- 2nd case: an Aerosol night

3 Interesting shot sets to draw the APF

- Different shot sets currently fired @ Malargüe
- Next step: new CLF shots to get the lowest scattering angles

4 Conclusion: aerosol monitoring all along the night

Validation of the reconstruction procedure

From one side, simulation of laser shots

- Offline: main program of the Auger collaboration,
- simulates lasers (E, θ, ϕ) in the Auger fluorescence detector,
- as output, a file in the same format as real data.

From the other side, development of my own program

- generate a laser following the (θ, ϕ) parameters,
- estimate the parameters $(\Delta z_i, \Delta \Omega_i, T_i)$ for each pixel,
- apply the corrections to the $\overline{\mathrm{Off}}\underline{\mathrm{line}}$ file
 - \rightarrow we get the phase function.

Validation done for the shot set ($\theta = 87^{\circ}$, $\phi_{FD} = 6^{\circ}$) @ Los Leones

1st limit case: a Rayleigh night

Karim Louedec (Linear Accelerator Lab.)

Corrections affected to each triggered pixel on the FD camera

Karim Louedec (Linear Accelerator Lab.)

Reconstruction of the Rayleigh phase function

- overlap between the $(1 + \cos^2 \zeta)$ function and our reconstruction,
- high sensitivity to the position of the laser on the FD camera.

2^{nd} case: an Aerosol night

$2^{\rm nd}$ case: an Aerosol night

Adding an aerosol population in the atmosphere

- a Henyey-Greenstein function \rightarrow (g = 0.6, f = 0.4),
- attenuation length fixed at 20 km.

Extraction of the Aerosol phase function

good overlap with the original Henyey-Greenstein.

Outline

A new way to get the APF

- Azimuthal ranges reached for each FD building
- Extraction procedure of the Aerosol Phase Function (APF)

2 Validation of the reconstruction procedure

- 1st limit case: a Rayleigh night
- 2nd case: an Aerosol night

Interesting shot sets to draw the APF

- Different shot sets currently fired @ Malargüe
- Next step: new CLF shots to get the lowest scattering angles

4 Conclusion: aerosol monitoring all along the night

Shot set: ($\theta = 73^{\circ}$, $\phi_{FD} = 25^{\circ}$) @ Los Leones

Shot set: ($\theta = 78^{\circ}$, $\phi_{FD} = 27^{\circ}$) @ Los Leones

Shot set: ($\theta = 80^{\circ}$, $\phi_{FD} = 52^{\circ}$) @ Los Leones

Shot set: ($\theta = 84^{\circ}$, $\phi_{FD} = 29^{\circ}$) @ Los Leones

Shot set: ($\theta = 87^{\circ}$, $\phi_{FD} = 29^{\circ}$) @ Los Leones

FD Camera for ($\theta = 87^{\circ}, \phi_{_{ED}} = 29^{\circ}$) @ Los Leones

Shot set: ($\theta = 87^{\circ}$, $\phi_{FD} = \phi_{1,2}$) @ Los Leones

Karim Louedec (Linear Accelerator Lab.)

Next step: new CLF shots to get the lowest scattering angles

- Zenithal angle for laser shot [degree]

ő

Lowest scattering angles @ Los Leones [degree]

Largest scattering angles @ Los Leones [degree]

36° 37° 38° 40° 44° 48° 53°

35° 36° 38° 41° 45° 51° 57°

34° 35° 38° 43° 49° 57° 68°

33° 35° 40° 47° 58° 73° 97°

36° 45° 61° 83° 95° 96°

42⁰ 77⁰ 93⁰ 94⁰ 95⁰ 96⁰ Azimuthal angle for laser shot [degree]

30° - Zenithal angle for laser shot [degree]

30° - Zenithal angle for laser shot [degree]

Number	of	time	slots	[100 ns]	

0 1 2 3 4 5 6										
1		8	26	47	61	75	88			
2		11	17	30	56	82				
3	12	14	17	25	37	59	105			
4	16	17	20	25	33	45	63			
5	20	21	23	27	33	42				
6	24	24	26	30	35	42				

dilemma between the low scattering angle reached and the time spread for the collected light profile

Karim Louedec (Linear Accelerator Lab.)

Extracting the APF from CLF shots

ATMON'10 @ Madison, WI 25 / 28

A HOT shot set: ($\theta = 87^{\circ}$, $\phi_{FD} = 2^{\circ}$) @ Los Leones

Outline

A new way to get the APF

- Azimuthal ranges reached for each FD building
- Extraction procedure of the Aerosol Phase Function (APF)

2 Validation of the reconstruction procedure

- 1st limit case: a Rayleigh night
- 2nd case: an Aerosol night

3 Interesting shot sets to draw the APF

- Different shot sets currently fired @ Malargüe
- Next step: new CLF shots to get the lowest scattering angles

4 Conclusion: aerosol monitoring all along the night

Aerosol monitoring all along the night

Proposal

- need of $\simeq 10 20$ shots for each (θ , $\phi_{\rm FD}$),
- procedure repeated every hours ?
- \implies Monitoring of the aerosols (complementary to the VAOD meas.)

Better knowledge of the MS parametrization

- aerosol phase function, from this method
- aerosol attenuation length, from this method (cross check with the VAOD ?)
- the vertical aerosol scale ?

 \Longrightarrow Production of monitored MS parameters for the shower reconstruction