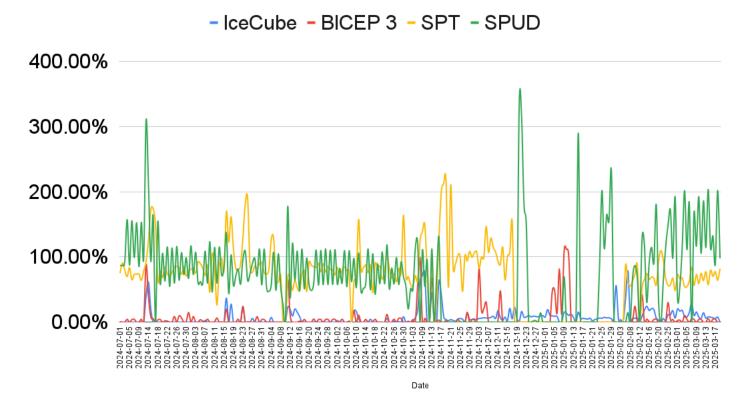
Computing – Upgrade and Beyond

Benedikt Riedel UW-Madison

SCAP 2025 1 April 2025

Upgrade and Beyond – Landscape


- Upgrade will double the photon collection area
- Software and analyses will need to adjust to multi-PMT modules, varying readout electronics, etc. Breaks basic assumptions in software
- AI/ML becoming more popular

Upgrade Data Rate

% Over Allocation By Project

- Biggest hurdle to get data from South Pole is the satellite bandwidth
- There is extra bandwidth that is not officially allocated – Used by other experiments
- Starlink has been tested Concerns from CMB experiments with EM inference
- Alternative locations for Starlink terminal TBD

Upgrade Storage

Detector Component	DAQ(MB/s)	Archive(TB/yr)	Satellite(GB/day)
IceCube			
In-ice/Icetop	10-12	375	145
IceCube Supernova	1.2	40	5
	Subtotal	415	150
Upgrade			
In-ice	2.1	56	18
	Subtotal	56	18
Gen2			
In-ice	12	322	104
Surface	11.5	308	15
Radio	11	350	15
	Subtotal	980	134
	Total	1451	302

 For 2023 storage replacement we assumed a 30% increase in data rate

2025-2, -3, -4

- Today 30% is the lower end of the increase
- New Offline Processing/Pass3 designed with Upgrade (and beyond) storage uncertainty in mind
- Lower on-disk footprint of data and storage – Trading CPU/GPU cycles for storage

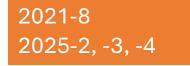
Tuesday, April 1, 202

Upgrade Computing

- Computing requirements for Upgrade are somewhat unclear, particularly on the simulation side
 - Memory usage for calibration constants, etc. Development in progress
 - New Triggers and data processing Will there be AI? Most likely
 - Leveraging in module computing to reduce computing and storage needs
- Upgrade data processing, triggers, etc. will evolve significantly throughout 2026 and 2027 Plan is to reprocess data (Pass4) in 2027
- Al Training and Inference demand is biggest question
 - Al training resources are mostly contributed Limited easily accessible collaboration-wide resources
 - Al Inference will need to be optimized in light of GPU needs for simulation
 - ML-Inference-as-a-Service/SONIC is the most resource efficient option, requires more development

2021-8 2025-2, -3, -4

IceCube Gen2 Storage


Detector Component	DAQ(MB/s)	Archive(TB/yr)	Satellite(GB/day)
IceCube			
In-ice/Icetop	10-12	375	145
IceCube Supernova	1.2	40	5
	Subtotal	415	150
Upgrade			
In-ice	2.1	56	18
	Subtotal	56	18
Gen2			
In-ice	12	322	104
Surface	11.5	308	15
Radio	11	350	15
	Subtotal	980	134
	Total	1451	302

- 200 TB storage in 2023 storage purchase are planned for Gen2 simulation
- At current stage of project (R&D, ~8 years out) this will be sufficient

IceCube Gen2 Computing

- Similar concerns as Upgrade
 - Increased PMT count and corresponding calibration constants, etc. Increased RAM usage
 - Number of photons simulated that will not be detected increases considerably Wasted computing
 - Longer run times for simulation
- AI Training for Gen2 is limited by GRAM Over 80 GB
 - Multi-GPU training?
 - Inefficiency in ML code?

Summary

- Upgrade computing needs are crystalizing
 - Satellite bandwidth a potential roadblock
 - New offline processing meant to reduce storage footprint
 - AI/ML appears the way forward for Upgrade analyses
- Gen2 requirements are still being worked on
 - R&D computing requirements are manageable but may require specialized resources

