ARA Simulation and Analysis

Presented by Melin Huang, NTU LeCosPA

Major Work done by

Chia-Yu Hu

Shang-Yu Sun

Hsin-Yi Tu

Shi-Hao Wang

With Contributions from

Chih-Ching Chen

Ruo-Yu Shang

Contents

- Physics Topics
 - -- UHE Neutrino Flux
 - -- Monopole Search
 - -- Other physics topics ...
- Monte Carlo (MC) Codes
 - -- Peter Gorham code
 - -- Modified MC code
- Optimization of ARA Antenna Spacing
 & Staion Spacing

NTU Monte Carlo

A new student, Huan-Ting Peng, will join us on ARA expt.

Made by Shang-Yu Sun & Shi-Hao Wang

Made by Shang-Yu Sun & Shi-Hao Wang

5

Made by Shang-Yu Sun & Shi-Hao Wang

Parametrization E Field

Parametrization E Field

Current Result (from Numerical Method):

E field in frequency domain vs observation distance (R)

Goals (Work still on-going):

- -- EM Shower Parametrization
- -- Hadronic Shower Parametrization
- -- Take LPM effect into account

Chih-Ching Chen

Trace RF from Shower Vertex to Antennas

• Purposes:

-- In seach of tracing step size for accurate and efficient propagation of RF from shower vertex to antenna

• Methods:

- -- Step-by-Step
- -- Intuitive Propagation (Proposed by *Ruo-Yu Shang*)
- -- Peter Gorham's Approach

• Algorithms:

- -- Trace shower from z = -2500 --> -100 m
- -- Compare dr vs step size (dr == r_final rf0)
- -- Compare dr/rf0 vs step size (rf0: reference r location) 9

Hsin-Yi Tu

Ruo-Yu Shang

Work by Hsin-Yi Tu

Work by Hsin-Yi Tu

11

Peter Gorham's method

Work by Hsin-Yi Tu

12

dr vs Step Size for different incident angle

Peter's method

Work by Hsin-Yi Tu

Trace from z = -2500 --> -100 m dr == r_final – rf0 rf0 = reference r value at final 13

dr/rf0 vs Step Size for different incident angle

Work by Hsin-Yi Tu

Conclusions for Trace RF from Shower Vertex to Antennas

- Performance of Intuitive Method (proposed by *Ruo-Yu Shang*) is pretty accurate
 - -- If any two antenna spacing ~15m, relative error is ~0 %
- Performance of Peter Gorham's approach is fastest

Optimization of ARA Antenna/Station Spacings

• Purposes:

Determine how to deploy ARA Antenna Spacing and Station Spacing in order to make

-- Detection Efficiency as high as possible

Shang-Yu Sun

- -- Angular Resolution of Neutrino pointing-back-source as good as possible
- Neutrino Energy Estimate as precise as possible ==> Not easy to do
 Any other criteria to consider ?

ARA Conceptual Design

From ARA Proposal

Simulation Methods: From Shower Location to Antennas

Simulation Methods: From Shower Location to Antennas

Simulation Methods: The Waveform

Chi Square for Reconstruction of Shower Vertex:

Resolution of Shower Vertex:

Work by Shang-Yu Sun

Resolution of RF Direction:

Work by Shang-Yu Sun

Reconstruction of Neutrino Direction:

Neutrino Angular Resolution:

Optimization: Detectioon Efficiency, Neutrino Angular Resolution vs Antenna Spacing and Station Spacing

Optimization:

Detectioon Efficiency, Neutrino Angular Resolution vs Antenna Spacing and Station Spacing

Station Spacing	Antenna Spacing	Ang. Reso.	Detec. Eff.
1.33 km	~50 m (Vpol-Vpol)	~3.5 deg.	~0.25
1.50 km	~50 m	~4.2 deg.	~0.30
1.60 km	~50 m	~5.4 deg.	~0.32
1.86 km	~50 m	~4.4 deg.	~0.36

Conclusions for Optimization of ARA Antenna/Station Spacings

- The larger station spacing, the higher detection efficincy
- Regardless of station spacing, the optimial choice of antenna spacing could be chosen as ~50m ==> With this choice, the neutrino angular resolution can reach < 5 degrees

Systematic Uncertainty Study for Neutrino Angular Resolution

• Purpose:

(Work still on-going)

To see how the factors (listed below) affect the reconstructed angular resolution of neutrino pointing back to sources

- -- If there are reconstruction uncertainties on depth of antenna (official: 200m) antenna spacing station spacing lateral distances/angles of three boreholes noise, others ... (suggestions ?)
- Any suggestions from existing experiments ? 30

Summary for NTU Monte Carlo

- Take Peter Gorham's MC code as a base
- May Modify
 - -- E field parametrization for

EM Shower & Hadronic Shower with including LPM effect (link far zone & near zone) (on-going)

- Employ SHINIE/MMC for neutrino propagation through Earth (on-going)
- Apply faster RF tracing code from shower vertex to antennas (on-going)
- Modify MC for Monopole and/or other physics analyses (will start soon)
- Modify MC for Neutrino analysis (will start soon)

Current SHINIE Structure

M. A. Huang, Guey-Lin Lin, Tsung-Che Liu Nucl. Phys. B (Proc. Suppl.) 175-176, 2008, 472-475