IceCube-Gen2

Vivian O'Dell
Wisconsin IceCube Particle Astrophysics Center
for the IceCube-Gen2 Collaboration

Photo: Yuya Makino

DETECTORS

SURFACE · RADIO · OPTICAL

Cosmic Ray Surface Array

An air shower array that sits on top of the optical array

One surface station installed above each optical string

IceCube-Gen2 Optical Module

4x the sensitivity of IceCube's modules

9,600 new optical modules in total to be deployed in the ice

IceCube-Gen2 (5 km)

A National Science Foundationmanaged research facility

Below-Ice Radio Array

361 detector stations spread over an area of 500 km²

200 m

IceCube-Gen2: extending the IceCube Neutrino Observatory

- Increasing the deep optical and surface arrays by eight-fold
- Large in-ice radio array for ultra high energy neutrinos

361 radio stations

120 new strings / 9600 optical modules 86 strings; 5160 optical modules modules

81 pairs of Surface detectors (IceTop tanks)

7 strings; 790 modules

Conceptual Design of the Optical Array

- 120 detector strings with 80 sensors each.
- 8 km³ instrumented volume of ice
- Optimized for high energy events

IceCube-Gen2 Optical Modules

The new design compared to IceCube optical modules has:

- 4 x sensitivity.
- Less power consumption.

Uses the module "footprint" of the Upgrade D-Egg (narrower module => smaller diameter drill hole, more time and fuel efficient drilling), and the multi-PMT concept of the Upgrade mDOMs.

Come in 2 flavors: 16 PMT / 18 PMT 6 of each type (12 in total) will be installed in the Upgrade this year allowing in-ice testing and calibration.

One design will be selected for building during the design phase of the detector. IceCube-Gen2 will install 9,600 optical modules

Prototype
Gen2 16-PMT Module

Prototype
Gen2 18-PMT Module

Photo credit: Yuya Makino/WIPAC

Radio Detectors for Highest Energies

- 361 radio detector stations
- 1.6 x 10³ km³ effective volume

South Pole ice is extremely transparent to radio waves (attenuation length > 1.5 km).

Technology has been successfully tested at the South Pole (ARA) and in Greenland (RNO-G).

Putting it all together

Large International Collaboration

IceCube-Gen2 Collaboration:

More than 400 scientists from 63 institutions in 15 countries. https://icecube-gen2.wisc.edu/

Strong Community Support in the US

IceCube has been received endorsements from major reviews and roadmap processes.

The Report of the 2023 Particle Physics Project Prioritization Panel (P5 panel):

Ranked among the top 5 particle physics projects in the US. Recommendation: IceCube-Gen2 without reduction in scope.

US Decadal Survey on Astronomy and Astrophysics 2020

Strong endorsement of IceCube-Gen2.

... and Internationally

European Astroparticle Physics Strategy 2017 – 2026 (APPEC roadmap)

"APPEC strongly supports the construction of the IceCube Upgrade, and the ambition to build IceCube-Gen2 in the following decade."

Selected to final road map for large infrastructure in **Germany (FIS)** 2025, with 75M Euro allocated for IceCube-Gen2.

Japan: IceCube-Gen2 is included in the Japanese MEXT roadmap 2023, with a projected contribution of ~5 billion yen from Japan.".

Current Status

- Embarking on a 2-3 year design plan
 - Complete optical array design, including optical modules, readout, cables
 - Refine radio array electronics; continue to monitor progress in Greenland
 - Plan to complete a site study to determine if IceCube-Gen2 radio array could be installed in Greenland
 - Many challenges: infrastructure, ice quality
 - Review results from prototype surface array stations; finalize designs as needed
 - Redesign the hot water drill to support larger inter-string distances of IceCube-Gen2;
 replace and upgrade obsolete equipment; improve fuel efficiency
 - Review and refine logistical needs; work with NSF to build a supportable model in terms of cargo, personnel, fuel, etc.

Near term goals

Optical Strings

- Deploy optical module prototypes during the upcoming South Pole field season
 - Will review efficiency / reliability / calibrations in situ
- Complete the optical module mechanical and electrical design and configuration
- Build, test, and document O(100) modules across two build sites (Japan / UW–Madison+Chang Mai University)
 - Design uniform build procedures, fixtures, and techniques that can be shared across build sites
 - Develop comprehensive testing suites and calibrations
- Prototype and test main downhole cable
 - Can reduce size by a factor of 3

Upgrade: Optical module production at DESY, Zeuthen

Main (downhole) cable: New trigger/data acquisition architecture could allow a factor 3 reduction in cable size (cost, weight, and volume!).

Near term goals: Drilling

A photo of the "drill camp" (source of pressurized hot water for the drill). Drill camp comprises ~ 40 buildings.

	IceCube	IceCube Upgrade	IceCube- Gen2
Hole Depth (meters)	2,450	2,600	2,690
Hole Diameter (centimeters)	45	52	45
Hole Lifetime (hours)	37	45-55	36
Hole Spacing (meters)	125	22	240
Number of Holes	86	7	120
Number of Field Seasons	7	1	9
Optical Modules/hole	60	112-115	80

Deep hot water drilling (> 1.6 miles!) at the South Pole is a unique capability of IceCube.

- The end of life for many elements is at hand.
- Need to develop/streamline drill and installation towers to support larger inter-hole spacing; update mechanicals and control systems.

Logistics

- Minimizing dependence on logistical support is a major goal of the program.
- Logistical support will play an important role. LC-130 flights (used for moving people and cargo) have been reduced by factor of ~5 since IceCube was installed.
- However, overland transport (SPoT) has been established and, if expanded, could allow us to reduce our dependence on flights by about a factor of 5.
- We plan to work with NSF/Antarctic Contractor to develop model for supporting logistics

Photo: Albrecht Karle

Schedule

- 3 volume <u>Technical Design Report</u> completed June, 2024
- Spend the next 2-3 years completing designs
- Once project starts, will take 10 years to complete the full array
 - Will be taking data as the array is installed; could have 25 strings installed within 5 years of startup

Summary

- The IceCube-Gen2 Collaboration has been designing a detector that would provide an order of magnitude greater sensitivity to high- and ultra-high-energy neutrinos.
- This project has been enthusiastically endorsed by the P5 and Astro2020 panels, and has already been included in the strategic roadmaps of the German and Japanese funding agencies.
- We have prototype optical and surface array devices that will be completed and installed at the South Pole in the upcoming South Pole field season.
- A radio array is being built in Greenland: we plan to use experience gained from the development, installation, and commissioning RNO-G to guide the design of the radio array for IceCube-Gen2.
- We plan to complete designs of the detector in the next 2-3 years and will be ready to construct, test, and install the detector.

