Cascade and v_{τ} Reconstruction in IceCube MANTS 2009 Eike Middell

Outline:

- Event Signatures
- Light Propagation in Ice
- First Guess Algorithms
- Likelihood Reconstructions
- ν_{τ} Reconstructions

Event Signatures in IceCube

- distinguish between track-like and cascade-like events
- all neutrino flavours can create cascade-like event
- cascades: good energy reconstruction but in ice poor directional information

Light Propagation

z [m]

-100

-150 -100

-50

0

x [m]

- cascades are nearly pointlike but anisotropic light sources
- inhomogeneous medium
- light propagation (scattering, absorption) simulated with Photonics
 - \rightarrow mean amplitude
 - \rightarrow delay time probability

3e-04

2e-04

0e+00

100 150

-100

-150 -100 -50

expectedNPE/totalNPE

1e-05

5e-06

0e+00

50 100 150

0

x [m]

First Guess Algorithms

LineFit - muon first guess

$$x = x_0 + \vec{V} \cdot t \qquad V = \frac{\langle r_i \cdot t_i \rangle - \langle r_i \rangle}{\langle t_i^2 \rangle - \langle t_i \rangle}$$

- rigid body analogy: tensor of inertia
- vertex ~ center of gravity
- eigenvalue ratio to select spherical events

$$R = \frac{E_1}{E_1 + E_2 + E_3}$$

- used in cascade online filter (+muon reconstruction)
- seeds more elaborate reconstructions

LLH Reconstruction

need a probabilistic description of the measurement

(waveform bin, reconstructed pulse)

(time, charge, width)

- tables allow to predict the measured charge
- In DOM o, pulse i: compare charge n_a to prediction μ_a

$$L = \prod_{\substack{\text{hit DOMs Pulse}\\o}} \prod_{\substack{i \in I\\i}} \frac{\mu_{oi}^{n_{oi}}}{n_{oi}!} \exp\left(-\mu_{oi}\right) \prod_{\substack{\text{unhit DOMs}\\o}} \exp\left(-\mu_{o}\right)$$

Resolutions

- simulated v_e E⁻²
 dataset
- contained events
- σ(log E)=0.13
- med(ψ) ~ 30° for
 10 TeV 10 PeV
- above 10PeV:
 - saturation effects
 - point-like reconstruction hypothesis not longer applicable

Further Remarks

- computational intensive
 - good energy and vertex resolution obtainable with a single minimization
 - directional reconstruction requires iterative minimization strategy
 - reconstruction results will be available at late filter levels
- other uses of this Poisson likelihood are possible:
 - use other reconstructions to fix some parameters $(t,x,y,z,E,\theta,\phi) \rightarrow fast energy reconstruction$
 - change reconstruction hypothesis to more than one light source

Tau Event Signatures

	Signature	Cartoon	Description
Decreasing IceCube Acceptance Energy →	Lollipop	$v_{\tau} \sim \tau$	Tau created outside (un- detected), decays→cascade
	Inverted Lollipop	- ¥ _τ τ	Tau created inside→cascade, decays outside (undetected)
	Sugardaddy (see talk by T. DeYoung)	ν _τ - τ μ	Tau created outside (un- detected), decays \rightarrow muon, see Δ in light level along track
	Double Bang		Tau created and decays inside, cascades well-separated
	Double Pulse	- V _T DOM Waveform	Double bang, w/cascades un- resolvable, but nearby DOM(s) see double pulsed waveform
	Low $E_{\tau} \mu$ Lollipop		Inverted lollipop but low-E tau decays quickly to μ ; Study ratio E_{sb}/E_{tr}

Tau Double Bang Reconstruction

event hypothesis of two cascades

 $7 \rightarrow 9$ parameters

- vertex and time t,x,y,z,
- tau direction Θ, φ
- track length L
- energy sum $\sigma = \log(E_1 + E_2)$
- energy ratio ρ=log(E₁/E₂)

Patrick Toale

Double Bang Reconstruction Performance

- IC40 MC study
- select bright cascade events (Nchannel ≥40, NCharge ≥ 300pe)
- start minimization with true parameters

ν_{τ} Detection via $\tau \rightarrow \mu$ Decay

- TeV to PeV energies
- look for decay $\tau \rightarrow \mu \nu_{\tau} \nu_{\mu}$
- μ track 3-7 times
 brighter than τ track
- fit charge distribution along track with sigmoid function

Sabrina Bechet

References

- http://photonics.sourceforge.net
- J. Lundberg et al., Nucl.Instrum.Meth.A581:619-631 (2007)
- E. Middell et al., in Proc. of 31th ICRC (2009)

Ice Properties

 scattering and absorption coefficients as functions of depth and wavelength

Charge Prediction

- calculate charge prediction from tabulated mean expected amplitude and delay time pdf
- simplify integration to p(t0)-pulse width
- correction factor f tunes charge prediction to observed charge in MC
- accounts for PMT effects, time window (ATWD only), feature extraction
- Credo contains correction functions for pulse maps with and without FADC pulses (see talk Madison '09)

$$\mu = f \langle \mu \rangle \int_{t_1}^{t_2} p(t) dt + R_{\text{noise}}(t_2 - t_1)$$

mean total npe delay time pdf noise

Photonics Table Scan

- test setup of one cascade and a DOM
- scan table for different orientation and delay times
- initial angular information gets nearly lost with increasing distance

Tau Channels in IceCube

