

Target of Opportunity and Multi-Messenger Programs with ANTARES

Véronique Van Elewyck

Laboratoire AstroParticule et Cosmologie (Paris)

An overview

Externally triggered neutrino searches

- handling of GCN alerts
- standard searches for GRB events
- GRBs above the horizon

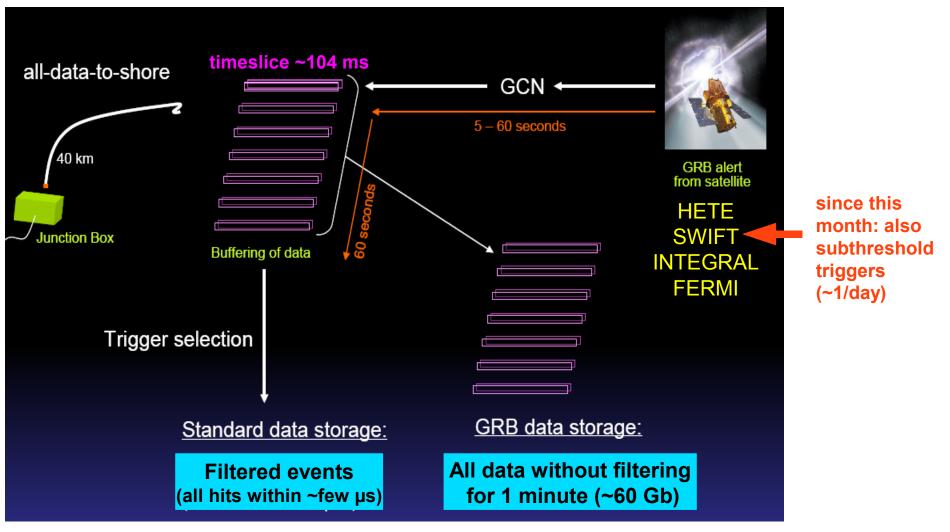
Neutrino-triggered follow-up activities

TAToO

Neutrinos in coincidence with gravitational waves

the GWHEN project

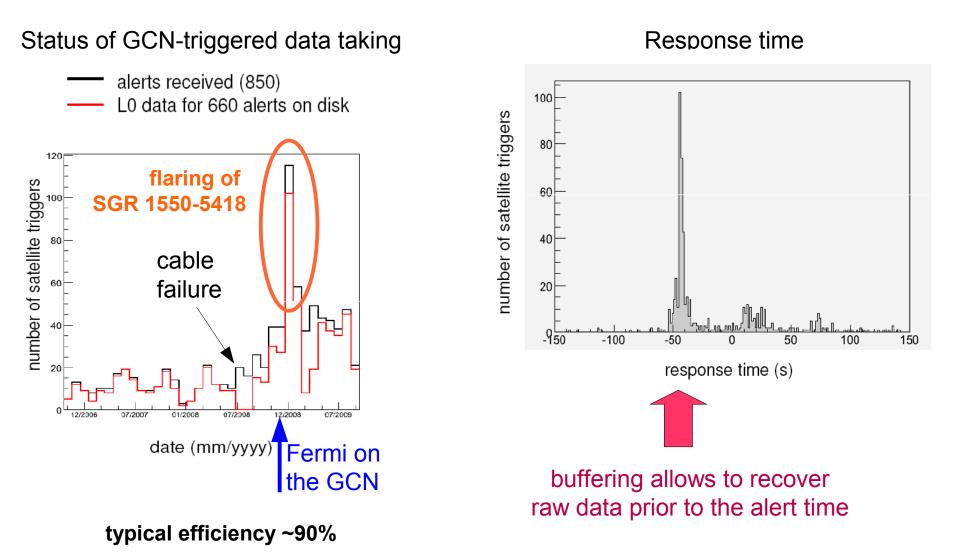
Other (time-uncorrelated) multi-messenger analysis


- correlations with AUGER events
- stacking analysis with HESS sources

Perspectives and future plans

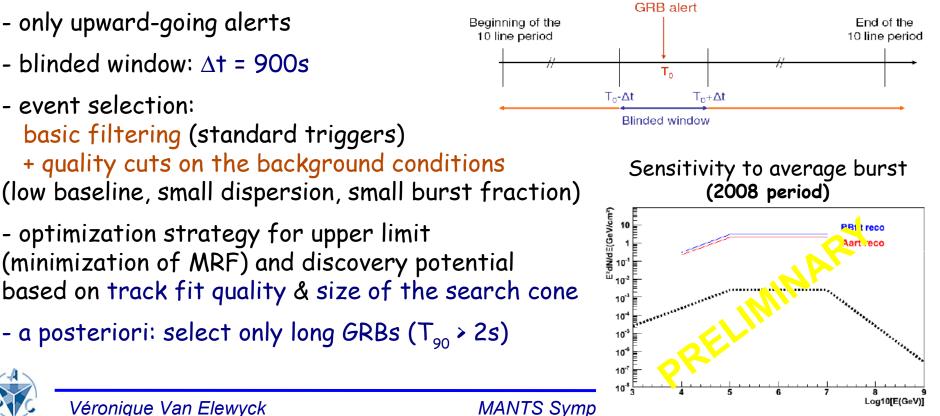
leave it for the discussion !

External triggers


ANTARES on the Gamma Ray Burst Coordinate Network:

Véronique Van Elewyck

External triggers


Véronique Van Elewyck

~ 15 Tbytes of data collected

General blinding policy: - the nature of the alert is hidden (GRB, other source, fake...) - only relative times are used

-- no analysis unblinded yet --

Analysis of the standard data in coincidence with GCN alerts

Analysis of the GRB datasets

- dedicated filtering and reconstruction strategy:

- 6 hits correlated in space and time with the GRB position
- GRB position used to constrain the track fit

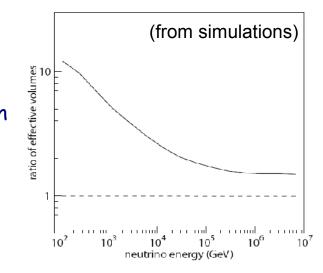
expected increase in GRB detection efficiency

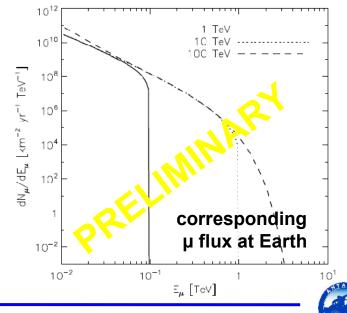
GRBs from above »

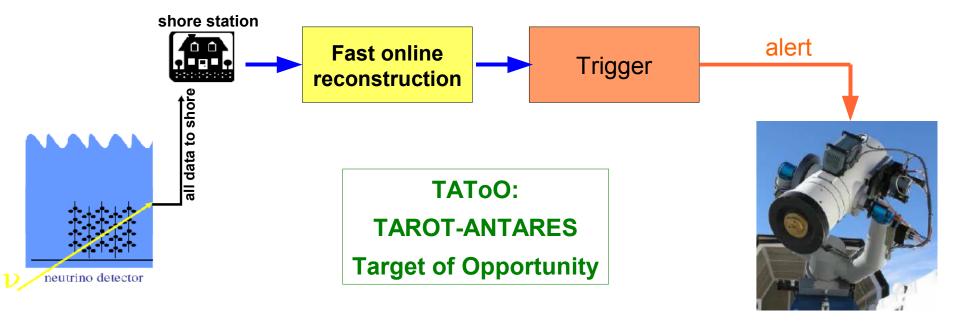
Idea: to detect μ 's created by TeV gamma-rays originating from GRBs (main channels: $\pi \rightarrow \mu \nu$ and $\gamma \rightarrow \mu^+ \mu^-$)

concentrate on down-going events

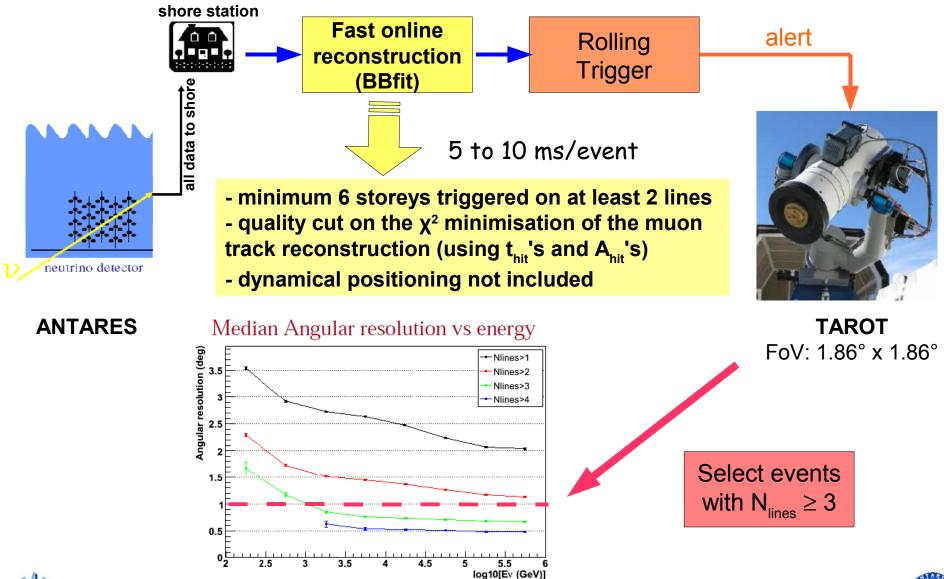
- time-correlated analysis:


study the angular correlation with GRB direction within a given time window


- time-independent analysis:

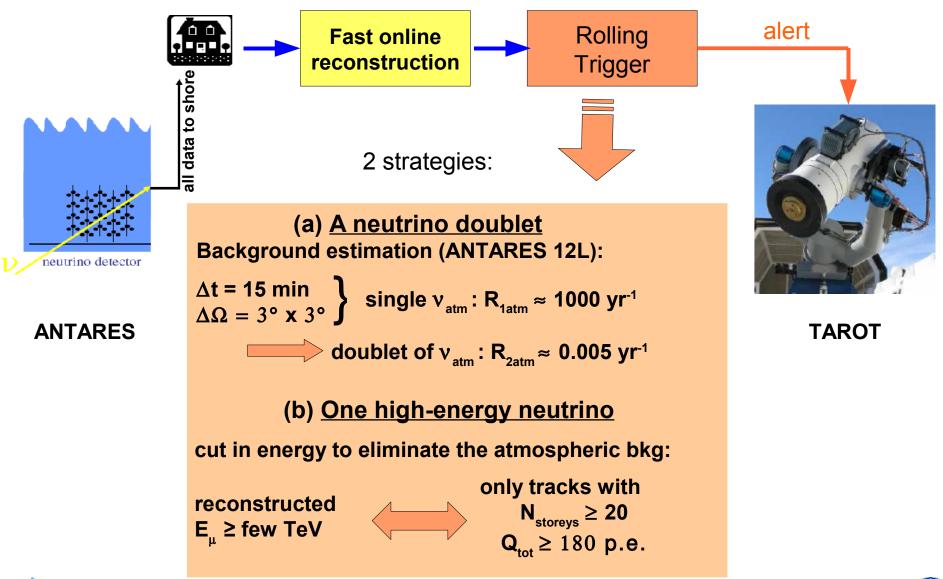

global excess of the μ flux in a given direction (more appropriate for steady sources)

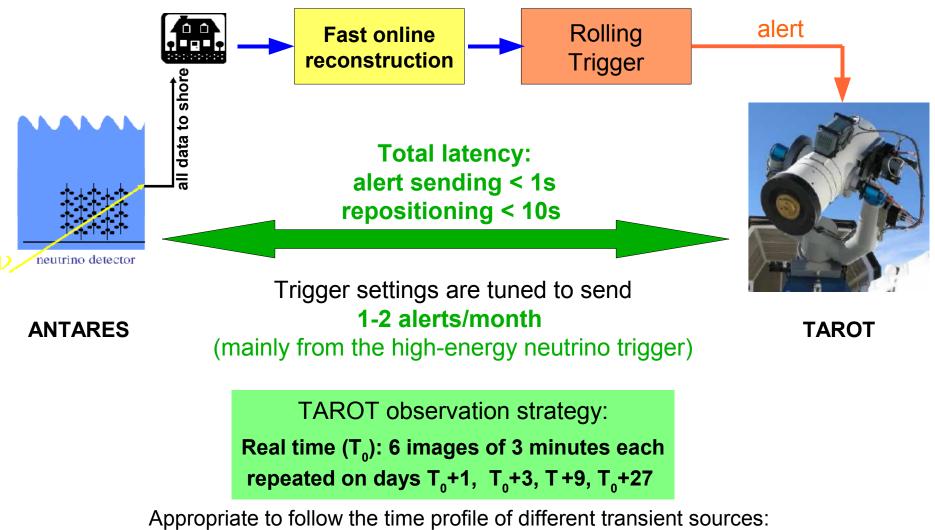
Véronique Van Elewyck



ANTARES

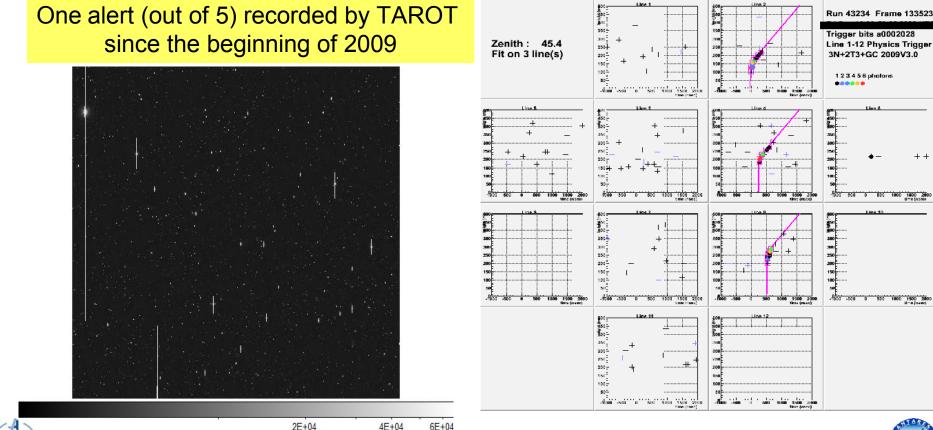
TAROT


(Télescope à Action Rapide pour les Objets Transitoires) 2 robotic, 25 cm-diameter optical telescopes: Calern (France) & La Silla (Chile) FOV: 1.86° x 1.86° specialized in prompt-phase observations in optical wavelengths (fast repositioning in alert mode: < 10 s)



Véronique Van Elewyck

Véronique Van Elewyck



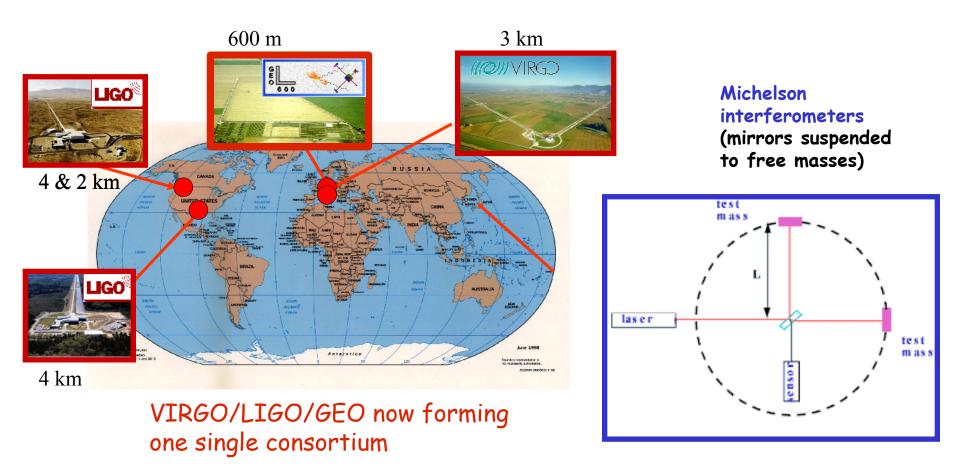
GRB afterglows (~minutes), core-collapse SNe (~days),...

TAToO Program is fully operational since February, 2009

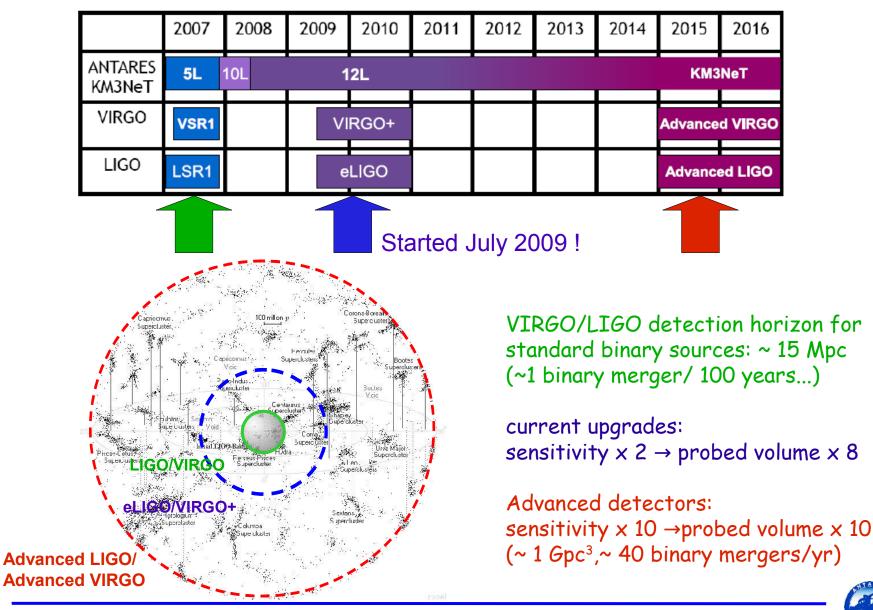
- Tests have been performed to validate the acquisition chain (e.g. fake alert in the direction of the Virgo cluster)
- > alerts are being issued at the rate of 1 to 2 per month
- Implementation of the offline optical image analysis is ongoing

Véronique Van Elewyck

MANTS Symposium, Berlin, September 2009

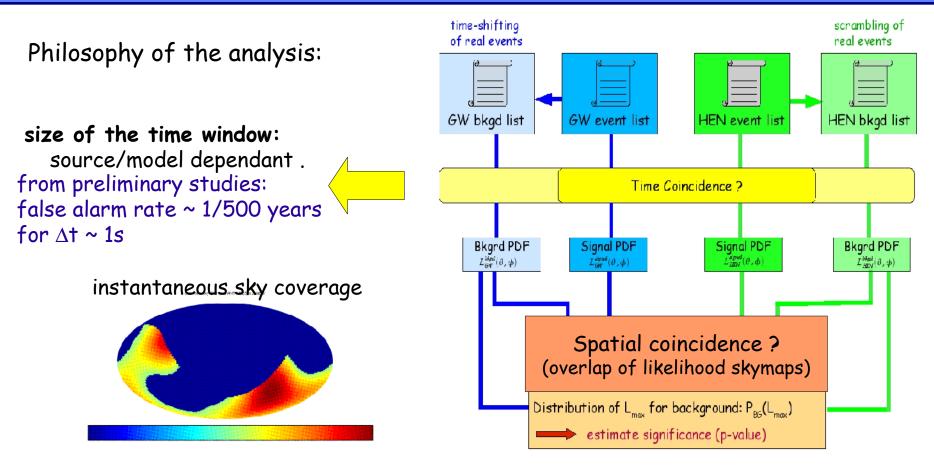

3N+2T3+GC 2009V3.0

1 2 3 4 5 6 photons

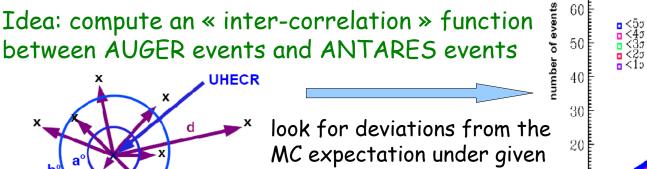

GW-HEN coincidences

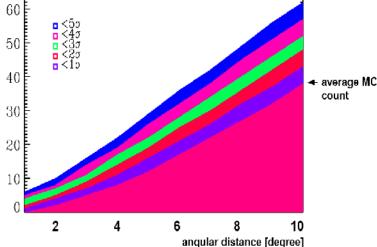
Motivations: - plausible common sources (GRBs (core collapse into BH or coalescing neutron stars), SGRs (magnetars), microquasars...) - potential for discovery of hidden sources (e.g. failed GRBs)

The instruments:


GW-HEN coincidences

GW-HEN coincidences

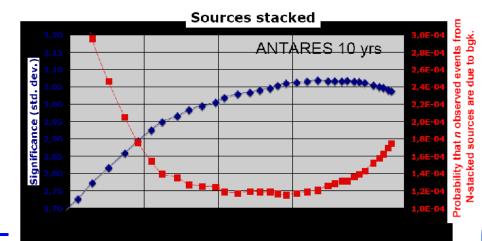

- GWHEN Workshop May 2009 at APC (Paris): http://www.gwhen-2009.org
- MoU ANTARES/VIRGO/LIGO to be signed soon
- Analyses to be launched (microquasars, GRBs)
- Discussion on the possibility of alert sending



Other multi-messenger studies

Correlations with AUGER events

hypotheses on the UHECR composition & propagation

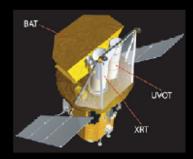

Correlations with HESS sources

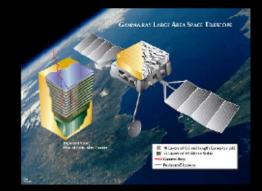
Idea: stack sources to benefit from the fact that the background fluctuations go as $1/\sqrt{N}_{\rm stacked}$

stacking a sample of 23 HESS galactic sources (including extended sources divided in sub-regions)

Expected significance (probability) under the assumption that all HESS sources are hadronic

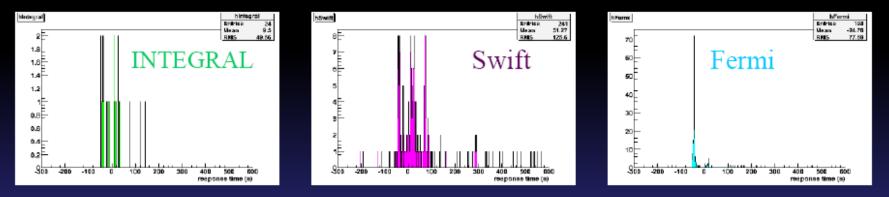
Véronique Van Elewyck


Backup slides


Véronique Van Elewyck Laboratoire AstroParticule et Cosmologie (Paris)

Time delays

GRB alerts from three satellites



INTEGRAL

Swift

Fermi

Response time = time delay – buffering time

From February 2007 to May 2009

Credit: S. Escoffier

Optimization strategy

Set an upper-limit \Rightarrow Minimize the Model Rejection Factor in order to improve the sensitivity:

$$MRF = \frac{\overline{\mu}_{90}(n_b)}{n_s}$$

10 lines detector: 112_c00_s00.det + n31098.root Atmospheric muons and neutrinos background:

Standard ANTARES production

```
Source: neutrino signal:
```

Simulation with a fixed direction $(\cos\theta, \phi) = (0.4, \pi)$

In order to optimize the sensitivity, we will use only events reconstructed with **at least 2 lines**.

2 reconstruction strategies: **BBfit & Aart**

2 parameters: $\Delta \theta$, track fit quality

Véronique Van Elewyck

Credit: D. Dornic

Optimization strategy

Set a discovery \Rightarrow put cuts in order to have the maximum signal in the cone compare to a background signal at the level of 3 or 5σ (kind of MDP)

10 lines detector: 112_c00_s00.det + n31098.root

Atmospheric muons and neutrinos background:

Standard ANTARES production

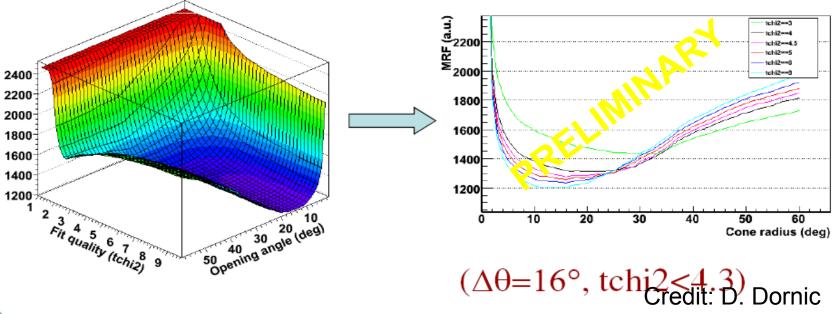
```
Source: neutrino signal:
```

Simulation with a fixed direction ($\cos\theta$, ϕ)= (0.4, π)

In order to optimize the sensitivity, we will use only events reconstructed with **at least 2 lines**.

2 reconstruction strategies: **BBfit & Aart**

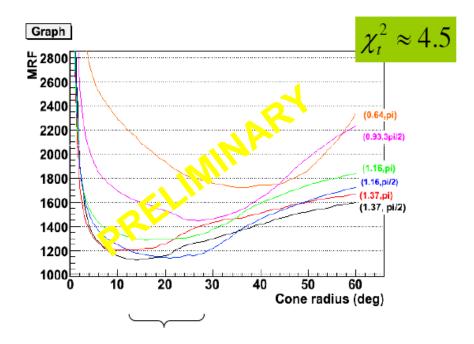
2 parameters: $\Delta \theta$, track fit quality


Credit: D. Dornic

U.L. Optimization ($\Delta \theta$, fit quality)

Minimization of the MRF:

- Signal events: simulation of a fixed source ($\cos\theta=0.4$, $\phi=\pi$)
- Background events: atm neutrino + muons productions



Véronique Van Elewyck

Stability of the optimization

Effect on the choice of the simulated direction

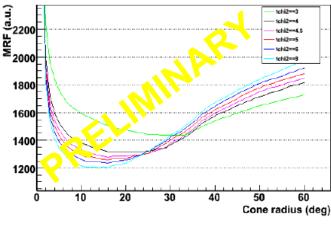
Different directions: $(\cos\theta, \phi) = (0.2, \pi)$ $(\cos\theta, \phi) = (0.4, \pi)$ $(\cos\theta, \phi) = (0.8, \pi)$ $(\cos\theta, \phi) = (0.2, \pi/2)$ $(\cos\theta, \phi) = (0.4, \pi/2)$ $(\cos\theta, \phi) = (0.6, 3\pi/2)$

An angular cut at 20° seems robust to the choice of the direction

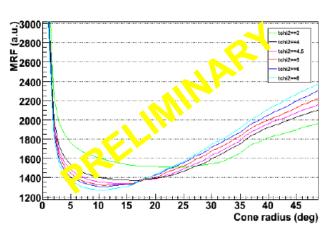
Credit: D. Dornic

Véronique Van Elewyck

Credit: D. Dornic


Stability of the optimization

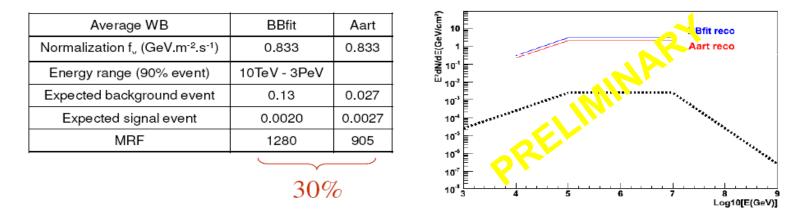
Effect on the number of atm muons


If the MC of the atmospheric muons is wrong by a factor 2, it has little change in the choice of the angular window

 $(\Delta \theta = 16^\circ, \text{tchi2} < 4.3)$

$(\Delta \theta = 11^\circ, \text{tchi2} < 6.4)$

Véronique Van Elewyck


Credit: D. Dornic

Sensitivity BBfit vs Aart

$$\int U.L. = \frac{\overline{\mu}_{90}(n_b)}{n_c} \phi_s(E)$$

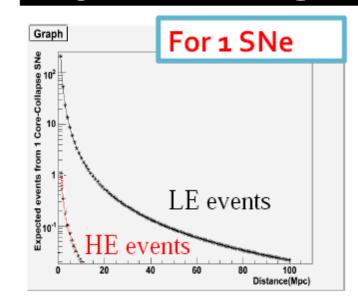
Upper limit: ≺

 n_b can be extracted from the data in the same direction of the alert

 Aart strategy better performance than BBfit at HE
BBfit is globally less efficient for the selection of multi-line events Angular resolution of the Aart strategy is largely better

Véronique Van Elewyck

Neutrino from failed GRB


Ando & Beacom model

(PRL 95,061103(2005))

Protons accelerated in midly relativistic jet (Γ ~3) p-p interaction \rightarrow Mesons \rightarrow Neutrinos

Expected neutrino signal

Using estimation: 1 Core collapse SNe/ yr/ 10 Mpc

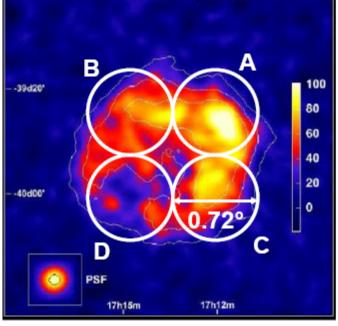
→ 0.4 SNe detected per year in ANTARES

D. Dornic – ICRC 2009

Stacking of HESS sources

List of HESS gal. sources @ Mar '09 - point-like only

List of Theory gal. Sources (2) Mar 03 - point-like only						
sources to be stacked	Other name	n°n	n ^{bg}	(S/N);		
1 HESSJ1702-420		1,36	0 ,15	1,11		
2 HESSJ0835-455	Vela X 🖊	1,11	0,46	0,88		
3 HESSJ1632-478	IGR J16320-475	0,81	0,19	0,81		
4 HESSJ1626-490		0,6	0,19	0,69		
5 HESSJ1514-591 Noutrin	a a v t a (E > 1 T a V)	2 ,54	0,19	0,63		
6 HESSJ1616-508 INCULIII	o evts (E>1 TeV)	/0,51	0,19	0,61		
7 HESSJ1841-055	````	0,44	0,10	0,60		
8 незај 1731-347 Over 10 yrs		0,43	0,13	0,57		
9 HESSJ1825-137		0,41	0,11	0,57		
10 HESSJ1614-518		0,46	0,19	0,57		
11 HESSJ1420-607	PSR J1420-6048?	0,45	0,19	0,57		
12 HESSJ0534+220 D 40 /			0,07	0,51		
13 HESSJ1809-193 BOK EV	ts over 10 yrs (in 🕴	0,33	0,11	0,49		
14 HESS11813-178	• 、	0,32	0,11	0,49		
15 HESSJ1908+063 & U.S	ang. bin around	0,27	0,09	0,45		
16 HESSJ1837-069		0,26	0,10	0,43		
	nacition)	0,29	0,19	0,42		
18 HESSJ1857+026 LINE SIC	position)	0,20	0,09	0,37		
19 HESSJ1023-575		0,22	0,19	0,34		
20 HESSJ1745-290	Sgr A+/Sgr A East ?	0,19	0,13	0,34		
21 HESSJ1640-465	WR 20a; RCW49 Westerlund 2;	0,18	0,17	0,30		
22 RCW86	SN 185?	0,18	0,19	0,30		
23 HESSJ1427-608	G338.3-0.0 ?; 3EG J163 4702 ?	0,18	0,19	0,29		
24 HESSJ1634-472		0,14	0,19	0,24		
25 HESSJ1718-385	PSR J1718-3825 ?	0,13	0,14	0,24		
26 HESSJ1708-410	G23.3-0.3 / W41?	0,12	0,15	0,24		
27 HESSJ1834-087	G8.7-0.1 / W30 ?; PSR J1803-2137 ?	0,11	0,10	0,23		
28 HESSJ1804-216	IGR J16358-4726 ?; G337.2+0.1 ?	0,11	0,12	0,23		
29 HESSJ1303-631		0,09	0,19	0,16		
30 HESSJ1800-240	3EG J1744-3011 ?	0,06	0,12	0,15		
31 HESSJ1745-303	G006.1-006; (W 28)	0,07	0,13	0,15		
32 HESSJ1912+101	PSR J1913+1011	0,05	0,08	0,15		
33 HESSJ1714-385	CTB 37A	0,06	0,14	0,13		
34 HESSJ1858+020	LS 5039	0,04	0,09	0,11		
35 HESSJ1826-148	PSR B1259-63	0,04	0,11	0,10		
36 HESSJ1302-638	G0.9+0.1	0,05	0,19	0,09		
37 HESSJ1747-281		0,04	0,13	0,09		
38 HESSJ0632+057	Monoceros ?	0,02	0,09	0,06		
39 HESSJ1713-381	W 28; GRO J1801-2320	0,02	0,14	0,05		
40 HESSJ1801-233	CTB 37B (G348.7+0.3)	? 0,02	0,12	0,05		


Véronique Van Elewyck

Credit:

F. Lucarelli

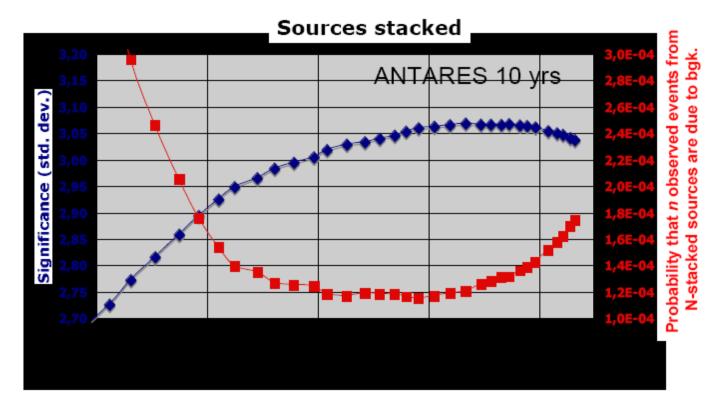
Extended sources: RX1713.7-3946

HESS event map

4 sub-regions

	n ^{on}	n ^{bg}	(S/N) _i
RX1713 (sub-reg. A)	0,79	0,21	0,79
RX1713 (sub-reg. B)	0,59	0,21	0,66
RX1713 (sub-reg. C)	0,61	0,21	0,67
RX1713 (sub-reg. D)	0,55	0,21	0,63

Credit: D. Dornic



Véronique Van Elewyck

Stacking of HESS gal. srcs (pt.-like+ext.)

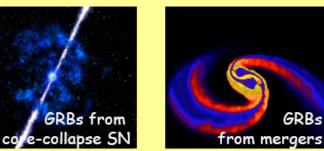
Expected significance (probability) under the assumption that all HESS sources are hadronic

Véronique Van Elewyck

MANTS Symposium, Berlin, September 2009

Credit: D. Dornic

Plausible GW-HEN sources


The usual suspects

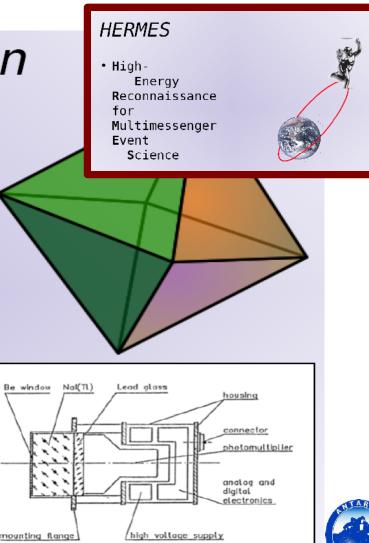
Galactic sources

Extragalactic sources

 Microquasars: radio-emitting X-ray binaries with relativistic jets (D~few kpc, Γ~ 1-20)
GW in blob accretion/ejection phases
HEN from jets (if hadronic component)
HEN & GW (ejection) signals correlated[1]

 SGRs: X-ray pulsars with soft gamma-ray flaring activity (plausibly magnetars)
→ GW from star deformation during outburst
→ HEN from GRB-like, hadron-loaded flares correlated signals, possibly within reach of present detectors [2]

- Short-Hard GRBs: associated with NS-NS or NS-BH mergers
- → GW associated to coalescence process
- \rightarrow HEN produced during burst [3]
- Long-Soft GRBs: core-collapse supernovae (collapsars)
- \rightarrow strong burst of GW during collapse & pre-GRB phase
- \rightarrow HEN emitted during GRB prompt and afterglow phases [4]
- Low-luminosity GRBs: associated to extremely energetic, possibly rotating and jet-driven SNs
- → possibly stronger GW signal but fainter HEN signal [5]
- Failed GRBs: mildly relativistic, optically thick, baryon-rich jets → possibly strong HEN signal; not observable in photons [6]
- Others...?


Véronique Van Elewyck

External triggers and alerts

> GRB triggered searches: a mission dedicated to multi-messenger astronomy ?

A GWHEN Mission

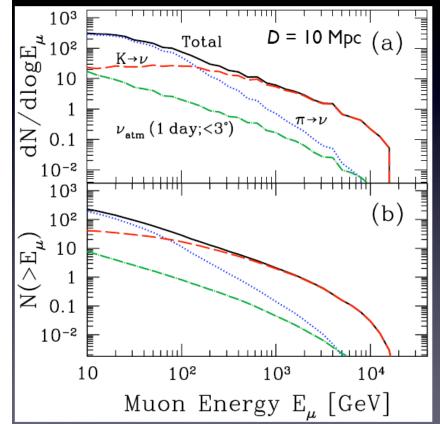
- All-sky, all the time
 - Booster launch into highapogee orbit
 - Low, stable background
- Real-time alerts
 - Onboard position calculation
- Brighter bursts
 - Konus-grade sensitivity fine
 - 100 GRB year⁻¹ goal
- Cheap
 - NaI + PMT
 - No position-sensitive detectors
- Sub-arcmin positions

Failed and low-luminosity GRBs

Unrevealed supernova-GRB connection?

	SN	"Failed" GRB	GRB
Energy	10 ⁵¹ erg	10 ⁵¹ erg	10 ⁵¹ erg
Rate/gal	~10 ⁻² yr ⁻¹	10 ⁻⁵ –10 ⁻² yr ⁻¹	~10 ⁻⁵ yr ⁻¹
Г	~	~3–100	~100–10 ³
	Barion rich Nonrelativistic Frequent	Similar kinetic energy	Baryon poor Relativistic jets Rare

• Evidence of mildly relativistic jets: Kulkarni et al. 1998; Berger et al. 2003; Totani 2002; Granot & Ramirez-Ruiz 2004; van Putten 2004; Soderberg et al. 2004, 2006, 2008, etc.


Véronique Van Elewyck

Failed and low-luminosity GRBs

Events at km³ detectors

Ando & Beacom, Phys. Rev. Lett. 95, 061103 (2005)

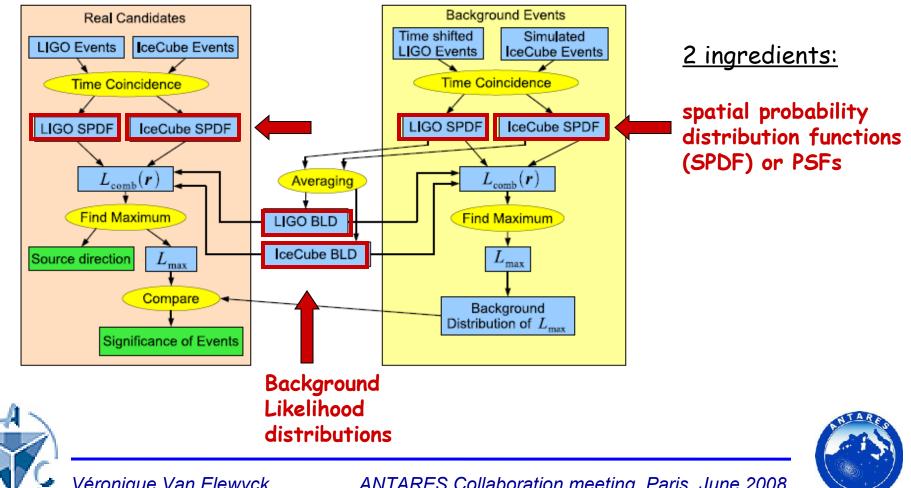
- Kaon contribution dominates
- Expected events above 100 GeV:
 - ~30 @ 10 Mpc
 - ~3 @ 30 Мрс
- These events cluster within 10 s time and 3° angular bins
 - Extremely low background

Low-energy neutrinos

Conclusions I

- Stellar collapse is promising source for GW/HEv
- Baryon-rich (failed) GRB
 - Rate can be very large
 - Good for neutrino production
- For the model with $E_{K}=3\times10^{51}$ erg and $\Gamma=3$, we expect ~30 neutrino events at km³ detectors from a 10-Mpc burst
- Kaon decays give important contribution than π decays

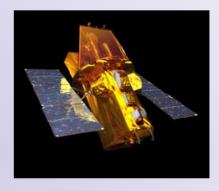
Conclusions 2


- Supernova rate in the Galaxy is ~1–3 century⁻¹
- Supernova rate in the local Universe is ~1-3 yr⁻¹ (within 10 Mpc)
- But it could be much larger because of
 - Starbursts (M 82, NGC 253) around 3 Mpc
 - Virgo cluster around 17 Mpc
- Good fraction might be associated with jets
- If 10%, then $R_{failed GRB} \sim 10 \text{ yr}^{-1}$ within 30 Mpc

LIGO - Ice Cube coincidence analysis

Cf. Search method for coincident events from LIGO and IceCube detectors, Y. Aso, Z. Marka, C. Finley, J. Dwyer, K. Kotake, S. Marka Class.Quant.Grav.25:114039,2008; arXiv:0711.0107 [astro-ph]

Véronique Van Elewyck


ANTARES Collaboration meeting, Paris, June 2008

External triggers and alerts

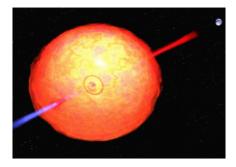
GRB triggered searches:

High-Energy Photonics

- Swift
 - Best sensitivity (but few short bursts)
 - Arcsec localizations (incl. external triggers)
 - Sees 1/8 of sky
- Fermi
 - GBM positions >degrees
 - Sees 1/2 of sky
 - LAT data for few (albeit very interesting) bursts
- IPN
 - All-sky, all the time
 - Brightest bursts
 - Poor localizations
 - Delayed by ~day from burst

External triggers and alerts

From the GW point of view:


How astrophysical triggers help

- Know time of event
 - Search within an astrophysically motivated time window.
 - GRB bursts: [-120,+60] s
 - GRB inspirals: [-5,+1] s
 - Higher detection probability at fixed false alarm probability.
- Often know sky position
 - Only look there!
 - Can account for time delay. antenna response of instrument in consistency tests
- Frequency range
 - Frequency-band specific analysis of the data set (e.g., SGR QPOs)

GW-HEN 2009.05.20

Progenitor type

 Model-dependent searches can be performed in some cases, e.g., matched-filter for inspiral signal for short hard GRBs.

- Sensitivity improvement:
 - Often a factor of ~2-3 in amplitude / 4-10 in energy.

Sutton: Review of GW Data Analysis G0900455-v1 #13

Alert sending: current latency for non-triggered searches ~ 30 min

Véronique Van Elewyck

Perspectives:

New optical instruments coming online soon: ROTSEMapper, Sky

SkyMapper

(5.7 deg², Southern sky survey with opportunities for ToO, 2009-2014)

Also consider ToO with X-ray (meilleure precision sur TO Sne,
+ grande profondeur de champ), radio telescopes (? utilité ?) ?

 \rightarrow HEN \rightarrow GW alerts: to be implemented (no real need for short latency as the whole GW data streams are registered)

- \blacktriangleright GW \rightarrow HEN alerts: current GW latency (~30 min) is an obstacle for ANTARES
 - improve latency from the GW side (down to ~10 min...)
 - \rightarrow enlarge ANTARES raw data buffer (\rightarrow hour ?)

