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Naturally Occurring Rare Events

2. Rarely interact with the 
rest of the world



Rare Event Search in 1950s

The Cowan-Reine Neutrino Experiment 

First detection of neutrino (via inverse beta decay):

ν̄e + p n + e+

Extremely low cross section, but unique signature:

• 

• Neutron capture 

e+ + e− 2γ
γ

Nobel Prize of 1995
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Double Beta Decay (2𝑣ββ)
First proposed by Maria Goeppert Mayer in 1935

First detection by Elliott, Hahn, Moe, in 1987

Decay half-life T1
2

∼ 1014 − 1024yrs

Much longer than the age of universe!



Rare Event Search in 2025

Double Beta Decay (2𝑣ββ)
First proposed by Maria Goeppert Mayer in 1935

First detection by Elliott, Hahn, Moe, in 1987

Decay half-life T1
2

∼ 1014 − 1024yrs

Much longer than the age of universe!

Neutrinoless Double-Beta Decay (0𝑣ββ)

Signal

ΔL = 2 lepton number violation process

Explain the matter-antimatter asymmetry in our universe

Changes our fundamental understanding of particle physics

Has not been observed at T1
2

> 1026yrs



Rare Event Search in 2025
Dark Matter

Galaxy Rotation Curve

Gravitational Lens Cosmic Microwave Background

Large Scale Structure Formation

The evidence for the existence of dark matter has been plenty



Rare Event Search in 2023
Dark Matter

Many DM candidates have been proposed (WIMP, Axion, etc.)

None has been observed.

The evidence for the existence of dark matter has been plenty

CF2: Wave-like Dark Matter 9

10-610-12 106 1012

Axion Dark Matter WIMP Dark Matter

mass [eV]

de Broglie Wavelength - λdB ≈ 2π
mv

Occupancy Number - N ≈ ρDM

m
λ3

dB

•Axion (  eV):   km with   
•WIMP (  GeV):  km with 

m ∼ 10−9 λdB ∼ 104 N ∼ 1044

m ∼ 100 λdB ∼ 10−16 N ∼ 10−36

where   GeV/cm3ρDM = 0.4
Adapted from B. Safdi

Dark Matter can feel like a zoo.  

—Prof. Lindley Winslow



What Makes Rare Event Search Hard?
It is extremely rare! Using 0𝑣ββ as an example …

•We have not seen 0𝑣ββ at half life of  


•Next-generation experiments typically aims at  (⨉100 improvement)


•Correspond to 3-4 event after 10 years of data taking

T1
2

> 1026yrs

T1
2

> 1028yrs

0νββ 
T1/2 = 1028 yr 
3-4 events

LEGEND-1000 Simulated example spectrum 
after cuts, from 10 years of data



What Makes Rare Event Search Hard?

Search for needle in a haystack

•1 event every 2.5-3.3 year, we need ultra-sensitive detector to capture every event

•As our detector gets more sensitive, we also collect lots of background events that are 
not 0νββ/WIMP DM



0𝑣ββ

Signal
Background

What Makes Rare Event Search Hard?
The Cowan-Reine Exp.

ν̄e + p n + e+

Pair         Annihilation

Neutron.       Capture

Nearly background-free

WIMP Dark Matter

Naturally radioactive and cosmic ray background



0𝑣ββ

Signal
Background

What Makes Rare Event Search Hard?
The Cowan-Reine Exp.

ν̄e + p n + e+

Pair         Annihilation

Neutron.       Capture

Nearly background-free

WIMP Dark Matter

Naturally radioactive and cosmic ray background

Control background is of unparalleled 
importance in rare event search experiment!
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The “magnifying glass” that 

help finding the needle
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AI/ML
The “forklift” that help 

removing the haystack

Radiation Detector
The “magnifying glass” that 

help finding the needle



Cosmogenic Background in LEGEND

1. Reduce the muon 
flux → increase 
overburden. 

2. Reduce the neutron 
flux around the 
detectors. 

3. Tag the 77(m)Ge 
production and apply 
a delayed 
coincidence cut.

Reduce the neutron flux around the 
detectors - Idea: 

add neutron moderators to slow neutrons 
down and increase their likelihood to be 
captured by LAr instead of 76Ge.

µ

n

A flagship HPGe experiment searching for Neutrinoless Double-Beta Decay



LEGEND Neutron Moderator

Computer 
Simulator

Parameter 
Estimation

How to find the optimal design parameter?

• Solid neutron moderator design: enclosing tube or turbine-
like structure 

• 5 design parameters: Radius r, n Panels, Thickness d, 
Length L and Angle 𝜃

no moderator enclosure turbine-like structure

Run a few simulations at 
different parameters

➡ High-dimensional parameter spaces 
➡ High computational cost of Geant4 MC 

simulations (~200 CPUh)  
➡ Traditional methods like grid searches are 

impractical

f(θ)
?



Why is Our Simulation So Expensive?
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Neutron that deposit 
energies elsewhere99.99%
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Why is Our Simulation So Expensive?
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Neutron that are 
absorbed/slowed by 
neutron moderator

99.99%

“Lucky” neutron that 
enters the detector0.01%



Given design parameter θ, we have …

Why is Our Simulation So Expensive?

Neutron that deposit 
energies elsewhere99.99%

Neutron that are 
absorbed/slowed by 
neutron moderator

99.99%

“Lucky” neutron that 
enters the detector0.01%

Design Metric

y =
#
#

=
m
N

 is intrinsically very small!y



The Rare Event Design Problem

Event Simulation

Each event can be considered as a Bernoulli RV: 
•  if triggered a signal 
•  otherwise 
•

Xi = 1
Xi = 0
Xi ∼ Bernoulli(p = t(θ, ϕi))

Simulate N event, each with event-specific 
parameters  (Neutron energy, position etc.)ϕi

Given design parameter θ:

Underlying trigger probability 
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The Rare Event Design Problem

Event Simulation

Each event can be considered as a Bernoulli RV: 
•  if triggered a signal 
•  otherwise 
•

Xi = 1
Xi = 0
Xi ∼ Bernoulli(p = t(θ, ϕi))

Simulate N event, each with event-specific 
parameters  (Neutron energy, position etc.)ϕi

Given design parameter θ:

Underlying trigger probability 

High-Fidelity (HF) Simulation

Low-Fidelity (LF) Simulation

t̄(θ) = ∫ t(θ, ϕ)g(ϕ)dϕ

Ultimate Goal
Emulate , or function   with as small N as possiblet̄(θ) f : θ y



RESuM: The Rare Event Surrogate Model
Key Insignt 1: Incorporating Prior Information with Conditional Neural Process

discrete

ϕi
Xi

A. Shuetz, A.W. Poon, A. Li, 
arXiv:2410.03873  

Accepted by ICLR 2025
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Key Insignt 1: Incorporating Prior Information with Conditional Neural Process
discrete

ϕi
Xi

continuous

ϕi

Key Insignt 2:  Multi-Fidelity Gaussian Process

RESuM: The Rare Event Surrogate Model A. Shuetz, A.W. Poon, A. Li, 
arXiv:2410.03873  

Accepted by ICLR 2025



RESuM: The Rare Event Surrogate Model A. Shuetz, A.W. Poon, A. Li, 
arXiv:2410.03873  

Accepted by ICLR 2025

• Modeling of 5 dim space (r, t, 𝜃, n, L)  with 3 fidelities 
(HF(MC), HF(CNP) and LF(CNP)) 

• model evolution shown as projection on r, t, n, 𝜃 and L 
at a random point in space 

• Acquisition function: Integrated variance reduction with 
parameter constraints

Acquisition function

HF(MC)

HF(CNP)

LF(CNP)

• Impact: Achieved a 66.5% reduction in 
neutron background with uncertainty 
predictions 

• Efficiency: Used only 3.3% of the 
computational resources compared to 
traditional method.

Result & Conclusion



Benchmarking RESuM A. Shuetz, A.W. Poon, A. Li, 
arXiv:2410.03873  

Accepted by ICLR 2025
We test RESuM vs. Other model on 100 out-of-sample HF Simulation
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Benchmarking RESuM A. Shuetz, A.W. Poon, A. Li, 
arXiv:2410.03873  

Accepted by ICLR 2025
We test RESuM vs. Other model on 100 out-of-sample HF Simulation

MFGP

MF-BNN

MFGP with Adaptive 
Importance Sampling



Benchmarking RESuM A. Shuetz, A.W. Poon, A. Li, 
arXiv:2410.03873  

Accepted by ICLR 2025
We test RESuM vs. Other model on 100 out-of-sample HF Simulation

RESuM

Model 1σ Coverage 2σ Coverage 3σ Coverage MSE

MFGP 2 4 5 0.0095

MF-BNN 100 100 100 0.471

AIS+MFGP 33 75 95 0.0012

RESuM 69 95 100 0.0024

RESuM (100 iter) 62.38 92.23 99.59 0.0037

MSE: 
(y − ̂y)2

Coverage: 
percentage of y 

falling in ̂y ± 1/2/3σ



Application: Binary Black Hole Population Synthesis

only ~1 merger!

1 000 000 binaries

mass 2

m
as

s 1

X

X X
X
X

X

SimulationBinary Black Hole Merger

In Collaboration with Prof. Floor Broeckgarden (UCSD)  



Application: Binary Black Hole Population Synthesis

only ~1 merger!

1 000 000 binaries

mass 2

m
as

s 1

X

X X
X
X

X

Leads to large Poisson (sampling) noise  
- signal to background ratio 1:106 
- Convergency only for N > 3·108 
- Still 2% statistical noise

SimulationBinary Black Hole Merger

In Collaboration with Prof. Floor Broeckgarden (UCSD)  



Broadband Axion Dark Matter Search with Toroidal Magnet
Axion-Modified Maxwell’s Equation:

∇ × B =
∂E
∂t

− gaγγ(E × ∇a −
∂a
∂t

B)

Jeff = gaγγ 2ρDMcos(mat)B

Y. Kahn, B. R. Safdi, and J. Thaler, 
Phys. Rev. Lett. 117, 141801

J. L. Ouellet et al. 
Phys. Rev. Lett. 122, 121802 (2019)

C. P. Salemi et al. 
Phys. Rev. Lett. 127, 081801 (2021) 
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Broadband Axion Dark Matter Search with Toroidal Magnet
Axion-Modified Maxwell’s Equation:

∇ × B =
∂E
∂t

− gaγγ(E × ∇a −
∂a
∂t

B)

Jeff = gaγγ 2ρDMcos(mat)B

Y. Kahn, B. R. Safdi, and J. Thaler, 
Phys. Rev. Lett. 117, 141801

J. L. Ouellet et al. 
Phys. Rev. Lett. 122, 121802 (2019)

C. P. Salemi et al. 
Phys. Rev. Lett. 127, 081801 (2021) 

Experimental Apparatus Constructed by Winslow Lab at MIT

Ultra-long Time Series 
10 million samples/second

1 millisecond

Frequency Spectrum 
Broadband search for axion DM



J. T. Fry et al, arXiv:2406.04378  
Submitting to Nature Scientific Data

TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising


        Open Data 
Release dark matter detector data for AI/ML 
algorithms

        Easy Benchmarking 
Design a quantitative benchmarking score to 
quantify the performance of different algorithms

        AI for Science 
Enables core AI algorithms to extract the signal 
and produce real physics results thereby 
advancing fundamental science



TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising


CH2: Injected Time Series [Ground Truth] CH1: SQUID Time Series [Noisy]

Train AI denoising model to recover…

No Signal Injected

CH1: SQUID Time Series [Noisy]

Use trained AI model to denoise…



TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising




TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising


Fully Connected NN Positional U-Net Transformer
Frequency Frequency

Preliminary Preliminary Preliminary



TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising


Λ = ( 1
n

n

∑
i=0

(SNRSQUID)i × (SNR′ Injected)i)
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TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising


Λ = ( 1
n

n

∑
i=0

(SNRSQUID)i × (SNR′ Injected)i)
Denoising Score = log5.27Λ

Test the denoising score by doping 
gaussian noise into Time Series



TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising




TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising




J. T. Fry et al, arXiv:2406.04378  
Submitting to Nature Scientific Data

TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising


        Axion Limit Boost 
ABRA TIDMAD Raw: 24 hr data, no denoising 

ABRA TIDMAD Denoised: 24 hr data with FCNet denoising 

ABRA Run 3: 2,400 hr data, no denoising 

Efficient denoising algorithms increased Axion search limit by 
1-2 orders of magnitude, approaching the previous world-
leading ABRA run 3 results with only 1% of statistics





New Electronics for KamLAND-Zen

PMT
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10 Gbps

Clock Input

10 Gbps  
SFP+

16-channel prototype for KamLAND2-Zen 

Machine 
learning on 

FPGA

*30-40% power 
consumption 

savings

*50% cost 
savings

Reduction in 
PCB footprint

Primary Goals:  
1. Digitize waveform during the chaotic period after a 

muon passes through the detector in order to record 
all neutrons, allowing us to reduce the Long-Lived 
spallation background.  

2. Streaming data (deadtime free system), large data 
throughput. 

3. Large memory buffers. 

* compared to standard RF signal chain 



Hardware-AI Codesign

Data Stream Offline Analysis

Energy

Position

Particle Type

Detector 
Response
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Hardware-AI Codesign

Data Stream Offline Analysis

Energy

Position

Particle Type

Detector 
Response

FPGAFPGA

Deploy ML model onto FPGA 
to produce these in real-time

Online model update to account 
for detector status change



Summary
“AI and Data Science has shaped rare event search, it’s 
an accelerator for new astrophysics results” 

• LEGEND: Rare Event Surrogate Model


• ABRACADABRA: TIDMAD Data Set

“It will continue to evolve and foster discovery in next-
generation experiments” 

• AI for Rare Event Lab: https://aobol.github.io/AoboLi/


• Email: aol002@ucsd.edu

https://aobol.github.io/AoboLi/
mailto:aol002@ucsd.edu

