Searching for Rare Astrophysical Events with Rare Al

Aobo Li Halıcıoğlu Data Science Institute **Department of Physics** UC San Diego

Workshop on Machine Learning for Analysis of High-Energy Cosmic Particles 06/19/2024

UC San Diego PHYSICS

Naturally Occurring Rare Events

Naturally Occurring Rare Events

Rare Event Search in 1950s

The Cowan-Reine Neutrino Experiment

First detection of neutrino (via inverse beta decay):

$$\bar{\nu_e} + p \to n + e^+$$

Extremely low cross section, but unique signature:

•
$$e^+ + e^- \rightarrow 2\gamma$$

• Neutron capture γ

Nobel Prize of 1995

Double Beta Decay $(2v\beta\beta)$

First proposed by Maria Goeppert Mayer in 1935 First detection by Elliott, Hahn, Moe, in 1987 Decay half-life $T_{\frac{1}{2}} \sim 10^{14} - 10^{24} yrs$

Much longer than the age of universe!

Double Beta Decay $(2v\beta\beta)$

First proposed by Maria Goeppert Mayer in 1935 First detection by Elliott, Hahn, Moe, in 1987 Decay half-life $T_{\frac{1}{2}} \sim 10^{14} - 10^{24} yrs$

Much longer than the age of universe!

Neutrinoless Double-Beta Decay ($0v\beta\beta$)

- **ΔL = 2 lepton number violation** process
- Explain the matter-antimatter asymmetry in our universe
- Changes our fundamental understanding of particle physics
- Has not been observed at $T_{\frac{1}{2}} > 10^{26} yrs$

Rare Event Search in 2025 Dark Matter

The evidence for the existence of dark matter has been plenty

Large Scale Structure Formation

Gravitational Lens

Cosmic Microwave Background

None has been observed.

Dark Matter can feel like a zoo.

Axion Dark Matter

Dark Matter

- The evidence for the existence of dark matter has been plenty
- Many DM candidates have been proposed (WIMP, Axion, etc.)

 - - -Prof. Lindley Winslow

WIMP Dark Matter

106 1012

What Makes Rare Event Search Hard?

It is extremely rare! Using $0v\beta\beta$ as an example ...

- We have not seen $0v\beta\beta$ at half life of $T_{\frac{1}{2}} > 10^{26}yrs$
- Next-generation experiments typically aims at $T_{\frac{1}{2}} > 10^{28} yrs$ (×100 improvement)
- Correspond to 3-4 event after 10 years of data taking

What Makes Rare Event Search Hard?

- not 0vββ/WIMP DM

• 1 event every 2.5-3.3 year, we need ultra-sensitive detector to capture every event

• As our detector gets more sensitive, we also collect lots of background events that are

Search for needle in a haystack

What Makes Rare Event Search Hard? The Cowan-Reine Exp. Ουββ **WIMP Dark Matter**

Nearly background-free

What Makes Rare Event Search Hard? Ουββ **WIMP Dark Matter** The Cowan-Reine Exp.

Control background is of unparalleled importance in rare event search experiment!

Radiation Detector

The "magnifying glass" that help finding the needle

Radiation Detector

The "magnifying glass" that help finding the needle

AI/ML

The "forklift" that help removing the haystack

Cosmogenic Background in LEGEND A flagship HPGe experiment searching for Neutrinoless Double-Beta Decay

1. Reduce the muon $flux \rightarrow increase$ overburden.

- 2. Reduce the neutron flux around the detectors.
- 3. Tag the $^{77(m)}$ Ge production and apply a delayed coincidence cut.

Reduce the neutron flux around the detectors - *Idea*:

add neutron moderators to slow neutrons down and increase their likelihood to be captured by LAr instead of ⁷⁶Ge.

LEGEND Neutron Moderator

Run a few simulations at different parameters

- Solid neutron moderator design: enclosing tube or turbinelike structure
- 5 design parameters: Radius r, n Panels, Thickness d, Length L and Angle θ
 - High-dimensional parameter spaces
 - High computational cost of Geant4 MC simulations (~200 CPUh)
 - Traditional methods like grid searches are impractical

Given design parameter θ , we have ...

Given design parameter θ , we have ...

Neutron that deposit energies elsewhere

Neutron that are **99.99%** absorbed/slowed by neutron moderator

Given design parameter θ , we have ...

Neutron that deposit energies elsewhere

0.01%

"Lucky" neutron that enters the detector

Neutron that are **99.99%** absorbed/slowed by neutron moderator

Given design parameter θ , we have ...

Neutron that deposit energies elsewhere

0.01%

"Lucky" neutron that enters the detector

Neutron that are **99.99%** absorbed/slowed by neutron moderator

Design Metric

y is intrinsically very small!

The Rare Event Design Problem

Given design parameter θ: Event Simulation

Simulate **N** event, each with event-specific parameters ϕ_i (Neutron energy, position etc.)

Each event can be considered as a **Bernoulli RV**:

- $X_i = 1$ if triggered a signal
- $X_i = 0$ otherwise
- $X_i \sim \text{Bernoulli}(p = t(\theta, \phi_i))$

Underlying trigger probability

The Rare Event Design Problem

Given design parameter θ : **Event Simulation**

Simulate **N** event, each with event-specific parameters ϕ_i (Neutron energy, position etc.)

Each event can be considered as a **Bernoulli RV**:

- $X_i = 1$ if triggered a signal
- $X_i = 0$ otherwise
- $X_i \sim \text{Bernoulli}(p = t(\theta, \phi_i))$

Underlying trigger probability

High-Fidelity (HF) Simulation

The Rare Event Design Problem

Ultimate Goal

Emulate $\overline{t}(\theta)$, or function $f: \theta \to y$ with as small N as possible

Given design parameter θ : **Event Simulation**

Simulate **N** event, each with event-specific parameters ϕ_i (Neutron energy, position etc.)

Each event can be considered as a **Bernoulli RV**:

- $X_i = 1$ if triggered a signal
- $X_i = 0$ otherwise
- $X_i \sim \text{Bernoulli}(p = t(\theta, \phi_i))$

Underlying trigger probability

Signal trigger rate $y = \frac{m}{N}$

99.9999%

Expensive simulator

т

 $m = \sum_{i=0}^{N} X_i \sim \text{Poisson}(N\overline{t}(\theta))$

N-m

Small N

High-Fidelity (HF) Simulation

Key scenarios

Small N scenario

 $y \in \{0/N, 1/N, ...\}$

High Variance, Low Cost.

Low-Fidelity (LF) Simulation

Key Insignt 1: Incorporating Prior Information with <u>Conditional Neural Process</u>

Key Insignt 1: Incorporating Prior Information with Conditional Neural Process

Key Insignt 1: Incorporating Prior Information with Conditional Neural Process

Key Insignt 2: Multi-Fidelity Gaussian Process

arXiv:2410.03873

Result & Conclusion

- Impact: Achieved a 66.5% reduction in neutron background with uncertainty predictions
- Efficiency: Used only % of the traditional method.

We test RESuM vs. Other model on 100 out-of-sample HF Simulation

We test RESuM vs. Other model on 100 out-of-sample HF Simulation

We test RESuM vs. Other model on 100 out-of-sample HF Simulation

MFGP

MF-BNN

We test RESuM vs. Other model on 100 out-of-sample HF Simulation

MF-BNN

MFGP

MFGP with Adaptive **Importance Sampling**

We test RESuM vs. Other model on 100 out-of-sample HF Simulation

Model	1σ Coverage	2σ Coverage	3σ Coverage	MSE
MFGP	2	4	5	0.0095
MF-BNN	100	100	100	0.471
AIS+MFGP	33	75	95	0.0012
RESuM	69	95	100	0.0024
RESuM (100 iter)	62.38	92.23	99.59	0.0037

A. Shuetz, A.W. Poon, A. Li, arXiv:2410.03873 Accepted by ICLR 2025

MSE: $(y - \hat{y})^2$

Coverage: percentage of y falling in $\hat{y} \pm 1/2/3\sigma$

Application: Binary Black Hole Population Synthesis In Collaboration with Prof. Floor Broeckgarden (UCSD)

Application: Binary Black Hole Population Synthesis In Collaboration with Prof. Floor Broeckgarden (UCSD)

Binary Black Hole Merger

Leads to large Poisson (sampling) noise

- signal to background ratio 1:10⁶
- Convergency only for N > $3 \cdot 10^8$
- Still 2% statistical noise

only ~1 merger!

<u>ABRACADABRA</u>→ Broadband Axion Dark Matter Search with Toroidal Magnet

Axion-Modified Maxwell's Equation: $\nabla \times B = \frac{\partial E}{\partial t} - g_{a\gamma\gamma}(E \times$

 $J_{eff} = g_{a\gamma\gamma} \sqrt{2\rho_{DM}} cos(m_a t) B$

C. P. Salemi et al. Phys. Rev. Lett. 127, 08180

$$(\nabla a - \frac{\partial a}{\partial t}B)$$

1	(2021)
<u> </u>	(2021)

<u>ABRACADABRA</u>→

Axion-Modified Maxwell's Equation: $\nabla \times B = \frac{\partial E}{\partial t} - g_{a\gamma\gamma}(E \times$ $J_{eff} = g_{a\gamma\gamma} \sqrt{2\rho_{DM}} cos(m_a t) B$

C. P. Salemi et al. Phys. Rev. Lett. 127, 08180

Broadband Axion Dark Matter Search with Toroidal Magnet

$$(\nabla a - \frac{\partial a}{\partial t}B)$$

1	(2021)
<u> </u>	(2021)

<u>ABRACADABRA</u>→

Axion-Modified Maxwell's Equation: $\nabla \times B = \frac{\partial E}{\partial t} - g_{a\gamma\gamma}(E \times \nabla a - \frac{\partial a}{\partial t}B)$ $J_{eff} = g_{a\gamma\gamma} \sqrt{2\rho_{DM} \cos(m_a t)B}$

Pickup Loop

SQUID

Broadband Axion Dark Matter Search with Toroidal Magnet

Frequency Spectrum

Ultra-long Time Series

10 million samples/second

1 millisecond

Experimental Apparatus Constructed by Winslow Lab at MIT

<u>ABRACADABRA</u>→

TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising

TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising

J. T. Fry¹ * jtfry@mit.edu

Aobo Li² liaobo77@ucsd.edu

Lindley Winslow¹ lwinslow@mit.edu

Xinyi Hope Fu¹ hopefu@mit.edu

Zhenghao Fu¹ fuzh@mit.edu

Kaliroe M. W. Pappas¹ kaliroe@mit.edu

¹Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ²Halıcıoğlu Data Science Institute, Department of Physics, UC San Diego, La Jolla, CA 92093, USA

J. T. Fry et al, arXiv:2406.04378 Submitting to Nature Scientific Data

4 **Open Data**

Release dark matter detector data for AI/ML algorithms

4 **Easy Benchmarking**

Design a quantitative benchmarking score to quantify the performance of different algorithms

4 **Al for Science**

Enables core AI algorithms to extract the signal and produce real physics results thereby advancing fundamental science

<u><u>ABRACADABRA</u>→</u>

TIDMAD: Time Series Dataset for Discovering Dark Matter with AI Denoising

Train AI denoising model to recover...

No Signal Injected

Use trained AI model to denoise...

Real Dark Matter Signal Excitation

<u>ABRACADABRA</u>⊳

Positional U-Net

Transformer

$$\Lambda = \left(\frac{1}{n} \sum_{i=0}^{n} (SNR_{SQ})\right)$$

 $(SNR'_{Injected})_i \times (SNR'_{Injected})_i$

$$\Lambda = \left(\frac{1}{n} \sum_{i=0}^{n} (SNR_{SQ})\right)$$

Denoising Score = $log_{5.27}\Lambda$

 $(SNR'_{Injected})_i \times (SNR'_{Injected})_i$

$$\Lambda = \left(\frac{1}{n} \sum_{i=0}^{n} (SNR_{SQUID})_i \times (SNR'_{Injected})_i\right)$$

Denoising Sc

Test the denoising score by doping gaussian noise into Time Series

ore =
$$log_{5.27}\Lambda$$

Denoising Score with Added Gaussian Noise 0.0 -1.0 -2.0 -Gaussian Noise Amplitude 3.0 -4.0 -5.0 -6.0 -7.0 -8.0 -9.0 -10.0 -00 20 20 60 8°, 10°, 1°, 1×, 10°, 18°, 20°, Gaussian Noise STD

Table 1: Fine and coarse denoising score for raw data, traditional algorithms, and trained ML models

Algorithms	Segment Size	Parameters	Fine Score	Coarse Score
None			1.00	1.10
Moving Average	$1 imes 10^6$	window $= 100$	0.52	0.64
SG Filter	$1 imes 10^6$	window = 100, order = 11	-2.77	-2.35
FC Net	$4 imes 10^4$	See Appendix A	6.43	6.55
PU Net	$4 imes 10^4$	See Appendix A	3.69	3.84
Transformer	$2 imes 10^4$	See Appendix A	3.95	4.18

Table 1: Fine and coarse denoising score for raw data, traditional algorithms, and trained ML models

Algorithms	Segment Size	Parameters	
None			
Moving Average	$1 imes 10^6$	window $= 100$	
SG Filter	$1 imes 10^6$	window = 100 , order = 11	
FC Net	$4 imes 10^4$	See Appendix A	
PU Net	$4 imes 10^4$	See Appendix A	
Transformer	$2 imes 10^4$	See Appendix A	

J. T. Fry et al, arXiv:2406.04378 Submitting to Nature Scientific Data

New Electronics for KamLAND-Zen

16-channel prototype for KamLAND2-Zen

Primary Goals:

- Digitize waveform during the chaotic period after a muon passes through the detector in order to record all neutrons, allowing us to reduce the Long-Lived spallation background.
- 2. Streaming data (deadtime free system), large data throughput.
- 3. Large memory buffers.

Reduction in PCB footprint	Machine learning on FPGA	*50% cost savings	*30-40% pow consumptio savings
-------------------------------	--------------------------------	----------------------	--------------------------------------

* compared to standard RF signal chain

Hardware-Al Codesign

Data Stream

Energy Position Offline Analysis **Particle Type** Detector

Response

Hardware-Al Codesign

Data Stream

Offline Analysis

Energy Position **Particle Type** Detector Response

Hardware-Al Codesign Deploy ML model onto FPGA to produce these in real-time

Data Stream

Offline Analysis

Energy Position Particle Type Detector

Response

Hardware-Al Codesign Deploy ML model onto FPGA to produce these in real-time

Data Stream

Energy Position Offline Analysis **Particle Type** Detector Response

Online model update to account for detector status change

Summary

"Al and Data Science has shaped rare event search, it's an accelerator for new astrophysics results"

- **LEGEND:** Rare Event Surrogate Model •
- **ABRACADABRA:** TIDMAD Data Set •

"It will continue to evolve and foster discovery in nextgeneration experiments"

- Email: aol002@ucsd.edu

Al for Rare Event Lab: https://aobol.github.io/AoboLi/