Paula Gálvez Molina, Abdul Rehman, Frank Schröder, for the IceCube collaboration paulagm@udel.edu; arehman@udel.edu; fgs@udel.edu

Detection of Radio Signals from Cosmic Rays Using Convolutional Neural Networks with Data from SKALA antennas at IceTop Workshop on Machine Learning for Analysis of High-Energy Cosmic Particles

Wednesday January 29th, 2025

BARTOL RESEARCH NSTITUTE

01 MOTIVATION 02 METHODOLOGY 03 FIRST RESULTS 04 ONGOING WORK

01

MOTIVATION

• Currently an operating station of the Surface Enhancement for IceCube measures radio signals from air showers

MOTIVATION

- Currently an operating prototype station of the Surface Enhancement for IceCube measures radio signals from air showers
- There is noise!

- Currently an operating prototype station of the Surface Enhancement for IceCube measures radio signals from air showers
- There is noise! (SNR: proxy for noisiness)

SNR: Signal to Noise Ratio

- Currently an operating prototype station of the Surface Enhancement for IceCube measures radio signals from air showers
- There is noise! (SNR: proxy for noisiness)

SNR: Signal to Noise Ratio Peak value of absolute value of the waveform.

- Currently an operating prototype station of the Surface Enhancement for IceCube measures radio signals from air showers
- There is noise! (SNR: proxy for noisiness)

SNR: Signal to Noise Ratio

Bin the waveform and compute the Root Mean Squared (RMS). Choose the **Median RMS**²

- Currently an operating prototype station of the Surface Enhancement for IceCube measures radio signals from air showers
- There is noise! (SNR: proxy for noisiness)

SNR: Signal to Noise Ratio SNR = $\frac{Peak value^2}{Median RMS^2}$

- Currently an operating prototype station of the Surface Enhancement for IceCube measures radio signals from air showers
- There is noise! (SNR: proxy for noisiness)

01 MOTIVATION

Wednesday January 29th, 2025

SNR: Signal to Noise Ratio

$SNR = \frac{Peak value^{2}}{Median RMS^{2}}$

- Currently an operating prototype station of the Surface Enhancement for IceCube measures radio signals from air showers
- There is noise! (SNR: proxy for noisiness)
- Previous detection techniques (such as SNR cuts) lose information at low SNR

01 MOTIVATION

Wednesday January 29th, 2025

SNR: Signal to Noise Ratio

$SNR = \frac{Peak value^{2}}{Median RMS^{2}}$

log10(SNR)

11

- Currently an operating prototype station of the Surface Enhancement for IceCube measures radio signals from air showers
- There is noise! (SNR: proxy for noisiness)
- Previous detection techniques (such as SNR cuts) lose information at low SNR

ΟΤΤΥΔΙ

Apply Convolutional Neural Networks to Classify radio waveforms and Denoise them.

$\mathbf{02}$

METHODOLOGY

DATA PREPARATION

• Generate waveform data set:

• (CoREAS) Simulated Signals

DATA PREPARATION

• Generate waveform data set:

- (CoREAS) Simulated Signals
- Measured Noise

O2 METHODOLOGY

DATA PREPARATION

- Generate waveform data set:
 - (CoREAS) Simulated Signals
 - Measured Noise
 - Signal + Noise waveforms

O2 METHODOLOGY

- Generate waveform data set:
 - (CoREAS) Simulated Signals, Measured Noise, Signal + Noise waveforms
 - Signal:
 - 10^16 to 10^18 eV, and zenith angles from 0 to 0.9 sin^2 (theta)
 - Noise:

METHODOLOGY

- January July 2022 Measured Noise
- Frequency band of 70-350 MHz (Two polarization channels)
- Traces of 1000 samples with 1 ns binning

TRAINING AND TESTING

- Generate waveform data set:
 - (CoREAS) Simulated Signals,
 Measured Noise, Signal + Noise
 waveforms
- Create 2 CNNs for Classifying and Denoising

O2 METHODOLOGY

TRAINING AND TESTING

- Generate waveform data set:
 - (CoREAS) Simulated Signals,
 Measured Noise, Signal + Noise
 waveforms
- Create 2 CNNs for Classifying and Denoising
- Split the dataset in 80%-20% for training and testing and train the CNNs

O2 METHODOLOGY

03

LOSS CURVES

O3 FIRST RESULTS

RESULTS CLASSIFIER

RESULTS

DENOISER

Peak Time Difference (Δt) Peak time of denoised signal - peak time of simulated signal

Power Ratio (E_signal,den - E_noise,den) / (E_signal,sim - E_noise,sim)

04

ONGOING WORK

MOTIVATION

Can we improve the performance of the CNNs by upsampling the waveforms?

04 ONGOING WORK

• Generate waveform data set 1: (CoREAS) Simulated Signals,

Measured Noise, Signal + Noise

waveforms:

- Signal:
 - $10^{17.5}$ to 10^{18} eV, and zenith angles from 0 to 0.9 sin² (theta)
- Noise:
 - January May 2024 Measured Noise
 - Frequency band of 70-350 MHz (Two polarization channels)
 - Traces of 1000 samples with 1.25 ns binning
- **ONGOING WORK**

• Generate waveform data set 1:

(CoREAS) Simulated Signals,

Measured Noise, Signal + Noise

waveforms:

- Signal:
 - $10^{17.5}$ to 10^{18} eV, and zenith angles from 0 to 0.9 sin² (theta)
- Noise:
 - January May 2024 Measured Noise
 - Frequency band of 70-350 MHz (Two polarization channels)
 - Traces of 1000 samples with 1.25 ns binning
- **ONGOING WORK**

- Generate waveform data set 1
- Generate data set 2:
 - Upsample (x4) data set 1 using Zero-padding in frequency domain

04 ONGOING WORK

- Generate waveform data set 1
- Generate data set 2
- Train (using same network architecture)*

* Training was performed 11 times to ensure robustness of results.

04 ONGOING WORK

ONGOING WORK

Peak time of denoised signal - peak time of simulated signal

Paula Gálvez Molina, Abdul Rehman, Frank Schröder

paulagm@udel.edu; arehman@udel.edu; fgs@udel.edu

04 ONGOING WORK

 Training on upsampled traces improves accuracy on location (direction) and amplitude (energy) of the pulse compared to upsampling after denoising or no upsampling at all.

CONCLUSIONS

- Training on upsampled traces improves accuracy on location (direction) and amplitude (energy) of the pulse compared to upsampling after denoising or no upsampling at all.
- Upsampling improves pulse denoising of traces at low and intermediate SNR.

CONCLUSIONS

THANKS

SUPPORTING SLIDES

SAMPLE DENOISED WAVEFORM

RESULTS CLASSIFIER

PTD SCATTER

- Not denoised (not upsampled)
- Denoised (upsampled after denoising) .
- Not denoised (upsampled) .

PTD SCATTER

- Not denoised (not upsampled)
- Denoised (upsampled before denoising)
- Not denoised (upsampled)

3.0 2.5 2.0 **Power Ratio** 1.51.00.5 0.0 -0.5 10^{2} 10^{3} 10^{4} 10^{1} SNR

PR SCATTER

- Not denoised (not upsampled)
- Not denoised (upsampled)
- Denoised (upsampled after denoising)

PR SCATTER

- Not denoised (not upsampled)
- Not denoised (upsampled)
- Denoised (upsampled before denoising)

